MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subneg Structured version   Unicode version

Theorem subneg 9880
Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subneg  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( A  +  B ) )

Proof of Theorem subneg
StepHypRef Expression
1 df-neg 9820 . . . 4  |-  -u B  =  ( 0  -  B )
21oveq2i 6306 . . 3  |-  ( A  -  -u B )  =  ( A  -  (
0  -  B ) )
3 0cn 9600 . . . 4  |-  0  e.  CC
4 subsub 9861 . . . 4  |-  ( ( A  e.  CC  /\  0  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( 0  -  B ) )  =  ( ( A  -  0 )  +  B ) )
53, 4mp3an2 1312 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  (
0  -  B ) )  =  ( ( A  -  0 )  +  B ) )
62, 5syl5eq 2520 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( ( A  -  0 )  +  B ) )
7 subid1 9851 . . . 4  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
87adantr 465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  0 )  =  A )
98oveq1d 6310 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
0 )  +  B
)  =  ( A  +  B ) )
106, 9eqtrd 2508 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( A  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6295   CCcc 9502   0cc0 9504    + caddc 9507    - cmin 9817   -ucneg 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645  df-sub 9819  df-neg 9820
This theorem is referenced by:  negneg  9881  negdi  9888  neg2sub  9891  subnegi  9910  subnegd  9949  recextlem1  10191  fzshftral  11777  shftval4  12890  sqreulem  13172  sqreu  13173  fsumshftm  13576  eftlub  13722  shft2rab  21787  atandm2  23074  atandm4  23076  acosneg  23084  atanneg  23104  atancj  23107  atanlogadd  23111  atanlogsublem  23112  atanlogsub  23113  efiatan2  23114  2efiatan  23115  tanatan  23116  atans2  23128  dvatan  23132  atantayl  23134  wilthlem1  23208  wilthlem3  23210  ftalem7  23218  ppiub  23345  2sqlem11  23516  2sqblem  23518  sgnneg  28304  fsumcube  29749  cos2h  29973  tan2h  29974  ftc1anclem5  30021  fourierdlem102  31832  fourierdlem112  31842  fourierdlem114  31844
  Copyright terms: Public domain W3C validator