MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Unicode version

Theorem submacs 15848
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
submacs  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )

Proof of Theorem submacs
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6  |-  B  =  ( Base `  G
)
2 eqid 2467 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2467 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
41, 2, 3issubm 15830 . . . . 5  |-  ( G  e.  Mnd  ->  (
s  e.  (SubMnd `  G )  <->  ( s  C_  B  /\  ( 0g
`  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x
( +g  `  G ) y )  e.  s ) ) )
5 selpw 4022 . . . . . . 7  |-  ( s  e.  ~P B  <->  s  C_  B )
65anbi1i 695 . . . . . 6  |-  ( ( s  e.  ~P B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) )  <->  ( s  C_  B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s ) ) )
7 3anass 977 . . . . . 6  |-  ( ( s  C_  B  /\  ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s )  <->  ( s  C_  B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s ) ) )
86, 7bitr4i 252 . . . . 5  |-  ( ( s  e.  ~P B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) )  <->  ( s  C_  B  /\  ( 0g
`  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x
( +g  `  G ) y )  e.  s ) )
94, 8syl6bbr 263 . . . 4  |-  ( G  e.  Mnd  ->  (
s  e.  (SubMnd `  G )  <->  ( s  e.  ~P B  /\  (
( 0g `  G
)  e.  s  /\  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s ) ) ) )
109abbi2dv 2604 . . 3  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  =  {
s  |  ( s  e.  ~P B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) ) } )
11 df-rab 2826 . . 3  |-  { s  e.  ~P B  | 
( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) }  =  {
s  |  ( s  e.  ~P B  /\  ( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) ) }
1210, 11syl6eqr 2526 . 2  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  =  {
s  e.  ~P B  |  ( ( 0g
`  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x
( +g  `  G ) y )  e.  s ) } )
13 inrab 3775 . . 3  |-  ( { s  e.  ~P B  |  ( 0g `  G )  e.  s }  i^i  { s  e.  ~P B  |  A. x  e.  s  A. y  e.  s 
( x ( +g  `  G ) y )  e.  s } )  =  { s  e. 
~P B  |  ( ( 0g `  G
)  e.  s  /\  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s ) }
14 fvex 5881 . . . . . 6  |-  ( Base `  G )  e.  _V
151, 14eqeltri 2551 . . . . 5  |-  B  e. 
_V
16 mreacs 14925 . . . . 5  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
1715, 16mp1i 12 . . . 4  |-  ( G  e.  Mnd  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
181, 2mndidcl 15790 . . . . 5  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
19 acsfn0 14927 . . . . 5  |-  ( ( B  e.  _V  /\  ( 0g `  G )  e.  B )  ->  { s  e.  ~P B  |  ( 0g `  G )  e.  s }  e.  (ACS `  B ) )
2015, 18, 19sylancr 663 . . . 4  |-  ( G  e.  Mnd  ->  { s  e.  ~P B  | 
( 0g `  G
)  e.  s }  e.  (ACS `  B
) )
211, 3mndcl 15781 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
22213expb 1197 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
2322ralrimivva 2888 . . . . 5  |-  ( G  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  e.  B
)
24 acsfn2 14930 . . . . 5  |-  ( ( B  e.  _V  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) y )  e.  B )  ->  { s  e.  ~P B  |  A. x  e.  s  A. y  e.  s 
( x ( +g  `  G ) y )  e.  s }  e.  (ACS `  B ) )
2515, 23, 24sylancr 663 . . . 4  |-  ( G  e.  Mnd  ->  { s  e.  ~P B  |  A. x  e.  s  A. y  e.  s 
( x ( +g  `  G ) y )  e.  s }  e.  (ACS `  B ) )
26 mreincl 14866 . . . 4  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  { s  e. 
~P B  |  ( 0g `  G )  e.  s }  e.  (ACS `  B )  /\  { s  e.  ~P B  |  A. x  e.  s 
A. y  e.  s  ( x ( +g  `  G ) y )  e.  s }  e.  (ACS `  B ) )  ->  ( { s  e.  ~P B  | 
( 0g `  G
)  e.  s }  i^i  { s  e. 
~P B  |  A. x  e.  s  A. y  e.  s  (
x ( +g  `  G
) y )  e.  s } )  e.  (ACS `  B )
)
2717, 20, 25, 26syl3anc 1228 . . 3  |-  ( G  e.  Mnd  ->  ( { s  e.  ~P B  |  ( 0g `  G )  e.  s }  i^i  { s  e.  ~P B  |  A. x  e.  s  A. y  e.  s 
( x ( +g  `  G ) y )  e.  s } )  e.  (ACS `  B
) )
2813, 27syl5eqelr 2560 . 2  |-  ( G  e.  Mnd  ->  { s  e.  ~P B  | 
( ( 0g `  G )  e.  s  /\  A. x  e.  s  A. y  e.  s  ( x ( +g  `  G ) y )  e.  s ) }  e.  (ACS
`  B ) )
2912, 28eqeltrd 2555 1  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2817   {crab 2821   _Vcvv 3118    i^i cin 3480    C_ wss 3481   ~Pcpw 4015   ` cfv 5593  (class class class)co 6294   Basecbs 14502   +g cplusg 14567   0gc0g 14707  Moorecmre 14849  ACScacs 14852   Mndcmnd 15772  SubMndcsubmnd 15818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-iin 4333  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-recs 7052  df-rdg 7086  df-1o 7140  df-oadd 7144  df-er 7321  df-en 7527  df-fin 7530  df-0g 14709  df-mre 14853  df-mrc 14854  df-acs 14856  df-mgm 15741  df-sgrp 15764  df-mnd 15774  df-submnd 15820
This theorem is referenced by:  mrcmndind  15849  gsumwspan  15880  subgacs  16085  symggen  16345  cntzspan  16700  gsumzsplit  16794  gsumzsplitOLD  16795  gsumzoppg  16817  gsumzoppgOLD  16818  gsumpt  16838  gsumptOLD  16839  subrgacs  31046
  Copyright terms: Public domain W3C validator