MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subm0 Structured version   Unicode version

Theorem subm0 15496
Description: Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
submmnd.h  |-  H  =  ( Ms  S )
subm0.z  |-  .0.  =  ( 0g `  M )
Assertion
Ref Expression
subm0  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subm0
StepHypRef Expression
1 submrcl 15486 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 submmnd.h . . 3  |-  H  =  ( Ms  S )
32submmnd 15494 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  H  e.  Mnd )
4 eqid 2443 . . 3  |-  ( Base `  M )  =  (
Base `  M )
54submss 15490 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  S  C_  ( Base `  M ) )
6 subm0.z . . 3  |-  .0.  =  ( 0g `  M )
76subm0cl 15492 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )
84, 6, 2submnd0 15463 . 2  |-  ( ( ( M  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  ( Base `  M )  /\  .0.  e.  S ) )  ->  .0.  =  ( 0g `  H ) )
91, 3, 5, 7, 8syl22anc 1219 1  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    C_ wss 3340   ` cfv 5430  (class class class)co 6103   Basecbs 14186   ↾s cress 14187   0gc0g 14390   Mndcmnd 15421  SubMndcsubmnd 15475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-0g 14392  df-mnd 15427  df-submnd 15477
This theorem is referenced by:  subsubm  15497  resmhm  15499  resmhm2  15500  resmhm2b  15501  submmulg  15674  submod  16080  gsumzsubmcl  16414  gsumzsubmclOLD  16415  expmhm  17892  xrge0gsumle  20422  xrge0tsms  20423  amgmlem  22395  dchrfi  22606  submarchi  26215  xrge0tsmsd  26265  deg1mhm  29587
  Copyright terms: Public domain W3C validator