MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subled Structured version   Unicode version

Theorem subled 10195
Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
subled.4  |-  ( ph  ->  ( A  -  B
)  <_  C )
Assertion
Ref Expression
subled  |-  ( ph  ->  ( A  -  C
)  <_  B )

Proof of Theorem subled
StepHypRef Expression
1 subled.4 . 2  |-  ( ph  ->  ( A  -  B
)  <_  C )
2 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
5 suble 10071 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  B
)  <_  C  <->  ( A  -  C )  <_  B
) )
62, 3, 4, 5syl3anc 1230 . 2  |-  ( ph  ->  ( ( A  -  B )  <_  C  <->  ( A  -  C )  <_  B ) )
71, 6mpbid 210 1  |-  ( ph  ->  ( A  -  C
)  <_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1842   class class class wbr 4395  (class class class)co 6278   RRcr 9521    <_ cle 9659    - cmin 9841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844
This theorem is referenced by:  absrdbnd  13323  mertenslem1  13845  dvle  22700  dvfsumlem2  22720  logcnlem4  23320  acosbnd  23556  lgsquadlem1  24010  pntpbnd2  24153  iccbnd  31618  lzenom  35064  acongrep  35279  stoweidlem1  37151  stirlinglem12  37235
  Copyright terms: Public domain W3C validator