MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subislly Structured version   Visualization version   Unicode version

Theorem subislly 20508
Description: The property of a subspace being locally  A. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
subislly  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( ( Jt  B )  e. Locally  A  <->  A. x  e.  J  A. y  e.  (
x  i^i  B ) E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
Distinct variable groups:    x, u, y, A    u, B, x, y    u, J, x, y    u, V, x, y

Proof of Theorem subislly
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttop 20188 . . 3  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( Jt  B )  e.  Top )
2 islly 20495 . . . 4  |-  ( ( Jt  B )  e. Locally  A  <->  ( ( Jt  B )  e.  Top  /\ 
A. z  e.  ( Jt  B ) A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) )
32baib 915 . . 3  |-  ( ( Jt  B )  e.  Top  ->  ( ( Jt  B )  e. Locally  A  <->  A. z  e.  ( Jt  B ) A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) )
41, 3syl 17 . 2  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( ( Jt  B )  e. Locally  A  <->  A. z  e.  ( Jt  B ) A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) )
5 vex 3050 . . . . 5  |-  x  e. 
_V
65inex1 4547 . . . 4  |-  ( x  i^i  B )  e. 
_V
76a1i 11 . . 3  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  x  e.  J
)  ->  ( x  i^i  B )  e.  _V )
8 elrest 15338 . . 3  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( z  e.  ( Jt  B )  <->  E. x  e.  J  z  =  ( x  i^i  B ) ) )
9 simpr 463 . . . . 5  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i  B ) )  ->  z  =  ( x  i^i  B ) )
109raleqdv 2995 . . . 4  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i  B ) )  ->  ( A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  (
( Jt  B )t  w )  e.  A
)  <->  A. y  e.  ( x  i^i  B ) E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  (
( Jt  B )t  w )  e.  A
) ) )
11 elin 3619 . . . . . . . . 9  |-  ( w  e.  ( ( Jt  B )  i^i  ~P z
)  <->  ( w  e.  ( Jt  B )  /\  w  e.  ~P z ) )
1211anbi1i 702 . . . . . . . 8  |-  ( ( w  e.  ( ( Jt  B )  i^i  ~P z )  /\  (
y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) )  <->  ( ( w  e.  ( Jt  B )  /\  w  e.  ~P z )  /\  (
y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) )
13 anass 655 . . . . . . . 8  |-  ( ( ( w  e.  ( Jt  B )  /\  w  e.  ~P z )  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) )  <->  ( w  e.  ( Jt  B )  /\  (
w  e.  ~P z  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) ) )
1412, 13bitri 253 . . . . . . 7  |-  ( ( w  e.  ( ( Jt  B )  i^i  ~P z )  /\  (
y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) )  <->  ( w  e.  ( Jt  B )  /\  (
w  e.  ~P z  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) ) )
1514rexbii2 2889 . . . . . 6  |-  ( E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  (
( Jt  B )t  w )  e.  A
)  <->  E. w  e.  ( Jt  B ) ( w  e.  ~P z  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) ) )
16 vex 3050 . . . . . . . . 9  |-  u  e. 
_V
1716inex1 4547 . . . . . . . 8  |-  ( u  i^i  B )  e. 
_V
1817a1i 11 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  u  e.  J )  ->  ( u  i^i  B
)  e.  _V )
19 elrest 15338 . . . . . . . 8  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( w  e.  ( Jt  B )  <->  E. u  e.  J  w  =  ( u  i^i  B ) ) )
2019ad2antrr 733 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  -> 
( w  e.  ( Jt  B )  <->  E. u  e.  J  w  =  ( u  i^i  B ) ) )
21 3anass 990 . . . . . . . 8  |-  ( ( w  e.  ~P z  /\  y  e.  w  /\  ( ( Jt  B )t  w )  e.  A )  <-> 
( w  e.  ~P z  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A
) ) )
22 simpr 463 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  ->  w  =  ( u  i^i  B ) )
23 simpllr 770 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
z  =  ( x  i^i  B ) )
2422, 23sseq12d 3463 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( w  C_  z  <->  ( u  i^i  B ) 
C_  ( x  i^i 
B ) ) )
25 selpw 3960 . . . . . . . . . 10  |-  ( w  e.  ~P z  <->  w  C_  z
)
26 inss2 3655 . . . . . . . . . . . 12  |-  ( u  i^i  B )  C_  B
2726biantru 508 . . . . . . . . . . 11  |-  ( ( u  i^i  B ) 
C_  x  <->  ( (
u  i^i  B )  C_  x  /\  ( u  i^i  B )  C_  B ) )
28 ssin 3656 . . . . . . . . . . 11  |-  ( ( ( u  i^i  B
)  C_  x  /\  ( u  i^i  B ) 
C_  B )  <->  ( u  i^i  B )  C_  (
x  i^i  B )
)
2927, 28bitri 253 . . . . . . . . . 10  |-  ( ( u  i^i  B ) 
C_  x  <->  ( u  i^i  B )  C_  (
x  i^i  B )
)
3024, 25, 293bitr4g 292 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( w  e.  ~P z 
<->  ( u  i^i  B
)  C_  x )
)
3122eleq2d 2516 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( y  e.  w  <->  y  e.  ( u  i^i 
B ) ) )
32 inss2 3655 . . . . . . . . . . . . 13  |-  ( x  i^i  B )  C_  B
33 simplr 763 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
y  e.  ( x  i^i  B ) )
3432, 33sseldi 3432 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
y  e.  B )
3534biantrud 510 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( y  e.  u  <->  ( y  e.  u  /\  y  e.  B )
) )
36 elin 3619 . . . . . . . . . . 11  |-  ( y  e.  ( u  i^i 
B )  <->  ( y  e.  u  /\  y  e.  B ) )
3735, 36syl6bbr 267 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( y  e.  u  <->  y  e.  ( u  i^i 
B ) ) )
3831, 37bitr4d 260 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( y  e.  w  <->  y  e.  u ) )
3922oveq2d 6311 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( Jt  B )t  w )  =  ( ( Jt  B )t  ( u  i^i 
B ) ) )
40 simp-4l 777 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  ->  J  e.  Top )
4126a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( u  i^i  B
)  C_  B )
42 simplr 763 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i  B ) )  ->  B  e.  V )
4342ad2antrr 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  ->  B  e.  V )
44 restabs 20193 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( u  i^i  B ) 
C_  B  /\  B  e.  V )  ->  (
( Jt  B )t  ( u  i^i 
B ) )  =  ( Jt  ( u  i^i 
B ) ) )
4540, 41, 43, 44syl3anc 1269 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( Jt  B )t  ( u  i^i  B ) )  =  ( Jt  ( u  i^i  B ) ) )
4639, 45eqtrd 2487 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( Jt  B )t  w )  =  ( Jt  ( u  i^i  B ) ) )
4746eleq1d 2515 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( ( Jt  B )t  w )  e.  A  <->  ( Jt  ( u  i^i  B
) )  e.  A
) )
4830, 38, 473anbi123d 1341 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( w  e. 
~P z  /\  y  e.  w  /\  (
( Jt  B )t  w )  e.  A
)  <->  ( ( u  i^i  B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
4921, 48syl5bbr 263 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  /\  w  =  ( u  i^i  B ) )  -> 
( ( w  e. 
~P z  /\  (
y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) )  <->  ( ( u  i^i  B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
5018, 20, 49rexxfr2d 4620 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  -> 
( E. w  e.  ( Jt  B ) ( w  e.  ~P z  /\  ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A ) )  <->  E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
5115, 50syl5bb 261 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  B  e.  V )  /\  z  =  ( x  i^i 
B ) )  /\  y  e.  ( x  i^i  B ) )  -> 
( E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A )  <->  E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
5251ralbidva 2826 . . . 4  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i  B ) )  ->  ( A. y  e.  ( x  i^i  B ) E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A )  <->  A. y  e.  (
x  i^i  B ) E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
5310, 52bitrd 257 . . 3  |-  ( ( ( J  e.  Top  /\  B  e.  V )  /\  z  =  ( x  i^i  B ) )  ->  ( A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  (
( Jt  B )t  w )  e.  A
)  <->  A. y  e.  ( x  i^i  B ) E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
547, 8, 53ralxfr2d 4619 . 2  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( A. z  e.  ( Jt  B ) A. y  e.  z  E. w  e.  ( ( Jt  B )  i^i  ~P z ) ( y  e.  w  /\  ( ( Jt  B )t  w )  e.  A )  <->  A. x  e.  J  A. y  e.  (
x  i^i  B ) E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
554, 54bitrd 257 1  |-  ( ( J  e.  Top  /\  B  e.  V )  ->  ( ( Jt  B )  e. Locally  A  <->  A. x  e.  J  A. y  e.  (
x  i^i  B ) E. u  e.  J  ( ( u  i^i 
B )  C_  x  /\  y  e.  u  /\  ( Jt  ( u  i^i 
B ) )  e.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   A.wral 2739   E.wrex 2740   _Vcvv 3047    i^i cin 3405    C_ wss 3406   ~Pcpw 3953  (class class class)co 6295   ↾t crest 15331   Topctop 19929  Locally clly 20491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-oadd 7191  df-er 7368  df-en 7575  df-fin 7578  df-fi 7930  df-rest 15333  df-topgen 15354  df-top 19933  df-bases 19934  df-lly 20493
This theorem is referenced by:  iccllyscon  29985
  Copyright terms: Public domain W3C validator