MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subid1 Structured version   Unicode version

Theorem subid1 9735
Description: Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subid1  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )

Proof of Theorem subid1
StepHypRef Expression
1 addid1 9655 . . 3  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
21oveq1d 6210 . 2  |-  ( A  e.  CC  ->  (
( A  +  0 )  -  0 )  =  ( A  - 
0 ) )
3 0cn 9484 . . 3  |-  0  e.  CC
4 pncan 9722 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  ( ( A  + 
0 )  -  0 )  =  A )
53, 4mpan2 671 . 2  |-  ( A  e.  CC  ->  (
( A  +  0 )  -  0 )  =  A )
62, 5eqtr3d 2495 1  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758  (class class class)co 6195   CCcc 9386   0cc0 9388    + caddc 9391    - cmin 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-po 4744  df-so 4745  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-ltxr 9529  df-sub 9703
This theorem is referenced by:  subneg  9764  subid1i  9786  subid1d  9814  swrd0fv  12448  swrdccatin12lem2b  12490  shftidt2  12683  abs2dif  12933  clim0  13097  rlim0  13099  rlim0lt  13100  climi0  13103  geo2lim  13448  cnbl0  20480  cnblcld  20481  cnfldnm  20485  abelth  22034  logtayl  22233  fallfac1  27676
  Copyright terms: Public domain W3C validator