MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgoinv Structured version   Visualization version   Unicode version

Theorem subgoinv 26048
Description: The inverse of a subgroup element is the same as its inverse in the parent group. (Contributed by Mario Carneiro, 8-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
subgoinv.1  |-  W  =  ran  H
subgoinv.2  |-  M  =  ( inv `  G
)
subgoinv.3  |-  N  =  ( inv `  H
)
Assertion
Ref Expression
subgoinv  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  =  ( M `  A ) )

Proof of Theorem subgoinv
StepHypRef Expression
1 issubgo 26043 . . . . . 6  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
21simp2bi 1025 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  GrpOp
)
3 subgoinv.1 . . . . . 6  |-  W  =  ran  H
4 eqid 2453 . . . . . 6  |-  (GId `  H )  =  (GId
`  H )
5 subgoinv.3 . . . . . 6  |-  N  =  ( inv `  H
)
63, 4, 5grporinv 25969 . . . . 5  |-  ( ( H  e.  GrpOp  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  (GId `  H )
)
72, 6sylan 474 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  (GId `  H )
)
8 simpl 459 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  H  e.  ( SubGrpOp `  G )
)
9 simpr 463 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  A  e.  W )
103, 5grpoinvcl 25966 . . . . . 6  |-  ( ( H  e.  GrpOp  /\  A  e.  W )  ->  ( N `  A )  e.  W )
112, 10sylan 474 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  e.  W )
123subgoov 26045 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  ( A  e.  W  /\  ( N `  A )  e.  W ) )  ->  ( A H ( N `  A
) )  =  ( A G ( N `
 A ) ) )
138, 9, 11, 12syl12anc 1267 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  ( A G ( N `  A ) ) )
14 eqid 2453 . . . . . 6  |-  (GId `  G )  =  (GId
`  G )
1514, 4subgoid 26047 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  (GId `  H
)  =  (GId `  G ) )
1615adantr 467 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  (GId `  H )  =  (GId
`  G ) )
177, 13, 163eqtr3d 2495 . . 3  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
181simp1bi 1024 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
1918adantr 467 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  G  e.  GrpOp )
20 eqid 2453 . . . . . 6  |-  ran  G  =  ran  G
2120, 3subgornss 26046 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  W  C_  ran  G )
2221sselda 3434 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  A  e.  ran  G )
2321adantr 467 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  W  C_ 
ran  G )
2423, 11sseldd 3435 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  e.  ran  G )
25 subgoinv.2 . . . . 5  |-  M  =  ( inv `  G
)
2620, 14, 25grpoinvid1 25970 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  ran  G  /\  ( N `  A )  e.  ran  G )  -> 
( ( M `  A )  =  ( N `  A )  <-> 
( A G ( N `  A ) )  =  (GId `  G ) ) )
2719, 22, 24, 26syl3anc 1269 . . 3  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  (
( M `  A
)  =  ( N `
 A )  <->  ( A G ( N `  A ) )  =  (GId `  G )
) )
2817, 27mpbird 236 . 2  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( M `  A )  =  ( N `  A ) )
2928eqcomd 2459 1  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  =  ( M `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889    C_ wss 3406   ran crn 4838   ` cfv 5585  (class class class)co 6295   GrpOpcgr 25926  GIdcgi 25927   invcgn 25928   SubGrpOpcsubgo 26041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-grpo 25931  df-gid 25932  df-ginv 25933  df-subgo 26042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator