MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgoid Structured version   Unicode version

Theorem subgoid 25436
Description: The identity element of a subgroup is the same as its parent's. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
subgoid.1  |-  U  =  (GId `  G )
subgoid.2  |-  T  =  (GId `  H )
Assertion
Ref Expression
subgoid  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  =  U )

Proof of Theorem subgoid
StepHypRef Expression
1 id 22 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  ( SubGrpOp `  G )
)
2 issubgo 25432 . . . . . 6  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
32simp2bi 1012 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  GrpOp
)
4 eqid 2457 . . . . . 6  |-  ran  H  =  ran  H
5 subgoid.2 . . . . . 6  |-  T  =  (GId `  H )
64, 5grpoidcl 25346 . . . . 5  |-  ( H  e.  GrpOp  ->  T  e.  ran  H )
73, 6syl 16 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  e.  ran  H )
84subgoov 25434 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  ( T  e.  ran  H  /\  T  e.  ran  H ) )  ->  ( T H T )  =  ( T G T ) )
91, 7, 7, 8syl12anc 1226 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T H T )  =  ( T G T ) )
104, 5grpolid 25348 . . . 4  |-  ( ( H  e.  GrpOp  /\  T  e.  ran  H )  -> 
( T H T )  =  T )
113, 7, 10syl2anc 661 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T H T )  =  T )
129, 11eqtr3d 2500 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T G T )  =  T )
132simp1bi 1011 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
14 eqid 2457 . . . . 5  |-  ran  G  =  ran  G
1514, 4subgornss 25435 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ran  H  C_  ran  G )
1615, 7sseldd 3500 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  e.  ran  G )
17 subgoid.1 . . . 4  |-  U  =  (GId `  G )
1814, 17grpoid 25352 . . 3  |-  ( ( G  e.  GrpOp  /\  T  e.  ran  G )  -> 
( T  =  U  <-> 
( T G T )  =  T ) )
1913, 16, 18syl2anc 661 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T  =  U  <->  ( T G T )  =  T ) )
2012, 19mpbird 232 1  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819    C_ wss 3471   ran crn 5009   ` cfv 5594  (class class class)co 6296   GrpOpcgr 25315  GIdcgi 25316   SubGrpOpcsubgo 25430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fo 5600  df-fv 5602  df-riota 6258  df-ov 6299  df-grpo 25320  df-gid 25321  df-subgo 25431
This theorem is referenced by:  subgoinv  25437
  Copyright terms: Public domain W3C validator