MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgoid Structured version   Visualization version   Unicode version

Theorem subgoid 26035
Description: The identity element of a subgroup is the same as its parent's. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
subgoid.1  |-  U  =  (GId `  G )
subgoid.2  |-  T  =  (GId `  H )
Assertion
Ref Expression
subgoid  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  =  U )

Proof of Theorem subgoid
StepHypRef Expression
1 id 22 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  ( SubGrpOp `  G )
)
2 issubgo 26031 . . . . . 6  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
32simp2bi 1024 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  GrpOp
)
4 eqid 2451 . . . . . 6  |-  ran  H  =  ran  H
5 subgoid.2 . . . . . 6  |-  T  =  (GId `  H )
64, 5grpoidcl 25945 . . . . 5  |-  ( H  e.  GrpOp  ->  T  e.  ran  H )
73, 6syl 17 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  e.  ran  H )
84subgoov 26033 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  ( T  e.  ran  H  /\  T  e.  ran  H ) )  ->  ( T H T )  =  ( T G T ) )
91, 7, 7, 8syl12anc 1266 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T H T )  =  ( T G T ) )
104, 5grpolid 25947 . . . 4  |-  ( ( H  e.  GrpOp  /\  T  e.  ran  H )  -> 
( T H T )  =  T )
113, 7, 10syl2anc 667 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T H T )  =  T )
129, 11eqtr3d 2487 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T G T )  =  T )
132simp1bi 1023 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
14 eqid 2451 . . . . 5  |-  ran  G  =  ran  G
1514, 4subgornss 26034 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ran  H  C_  ran  G )
1615, 7sseldd 3433 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  e.  ran  G )
17 subgoid.1 . . . 4  |-  U  =  (GId `  G )
1814, 17grpoid 25951 . . 3  |-  ( ( G  e.  GrpOp  /\  T  e.  ran  G )  -> 
( T  =  U  <-> 
( T G T )  =  T ) )
1913, 16, 18syl2anc 667 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( T  =  U  <->  ( T G T )  =  T ) )
2012, 19mpbird 236 1  |-  ( H  e.  ( SubGrpOp `  G
)  ->  T  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    = wceq 1444    e. wcel 1887    C_ wss 3404   ran crn 4835   ` cfv 5582  (class class class)co 6290   GrpOpcgr 25914  GIdcgi 25915   SubGrpOpcsubgo 26029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fo 5588  df-fv 5590  df-riota 6252  df-ov 6293  df-grpo 25919  df-gid 25920  df-subgo 26030
This theorem is referenced by:  subgoinv  26036
  Copyright terms: Public domain W3C validator