MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgntr Structured version   Unicode version

Theorem subgntr 20774
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 20776, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
subgntr  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  S  e.  J )

Proof of Theorem subgntr
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5001 . . . . . 6  |-  ( ( y  e.  ( Base `  G )  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) ) "
( ( int `  J
) `  S )
)  =  ran  (
( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  |`  ( ( int `  J ) `  S ) )
2 subgntr.h . . . . . . . . . . . 12  |-  J  =  ( TopOpen `  G )
3 eqid 2454 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
42, 3tgptopon 20750 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
543ad2ant1 1015 . . . . . . . . . 10  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  J  e.  (TopOn `  ( Base `  G
) ) )
65adantr 463 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
7 topontop 19597 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
85, 7syl 16 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  J  e.  Top )
98adantr 463 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  J  e.  Top )
10 simpl2 998 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  S  e.  (SubGrp `  G )
)
113subgss 16404 . . . . . . . . . . . 12  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  S  C_  ( Base `  G
) )
13 toponuni 19598 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
146, 13syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  ( Base `  G )  = 
U. J )
1512, 14sseqtrd 3525 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  S  C_ 
U. J )
16 eqid 2454 . . . . . . . . . . 11  |-  U. J  =  U. J
1716ntropn 19720 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( int `  J ) `  S
)  e.  J )
189, 15, 17syl2anc 659 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( int `  J
) `  S )  e.  J )
19 toponss 19600 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  ( Base `  G )
)  /\  ( ( int `  J ) `  S )  e.  J
)  ->  ( ( int `  J ) `  S )  C_  ( Base `  G ) )
206, 18, 19syl2anc 659 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( int `  J
) `  S )  C_  ( Base `  G
) )
2120resmptd 5313 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  |`  ( ( int `  J ) `  S ) )  =  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) )
2221rneqd 5219 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  |`  ( ( int `  J
) `  S )
)  =  ran  (
y  e.  ( ( int `  J ) `
 S )  |->  ( ( x ( -g `  G ) A ) ( +g  `  G
) y ) ) )
231, 22syl5eq 2507 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) " ( ( int `  J ) `
 S ) )  =  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) ) )
24 simpl1 997 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  G  e.  TopGrp )
25 simpr 459 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  x  e.  S )
2616ntrss2 19728 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( int `  J ) `  S
)  C_  S )
279, 15, 26syl2anc 659 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( int `  J
) `  S )  C_  S )
28 simpl3 999 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  A  e.  ( ( int `  J
) `  S )
)
2927, 28sseldd 3490 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  A  e.  S )
30 eqid 2454 . . . . . . . . . 10  |-  ( -g `  G )  =  (
-g `  G )
3130subgsubcl 16414 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  A  e.  S )  ->  (
x ( -g `  G
) A )  e.  S )
3210, 25, 29, 31syl3anc 1226 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
x ( -g `  G
) A )  e.  S )
3312, 32sseldd 3490 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
x ( -g `  G
) A )  e.  ( Base `  G
) )
34 eqid 2454 . . . . . . . 8  |-  ( y  e.  ( Base `  G
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  =  ( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )
35 eqid 2454 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3634, 3, 35, 2tgplacthmeo 20771 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  (
x ( -g `  G
) A )  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  e.  ( J Homeo J ) )
3724, 33, 36syl2anc 659 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
y  e.  ( Base `  G )  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  e.  ( J Homeo J ) )
38 hmeoima 20435 . . . . . 6  |-  ( ( ( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  e.  ( J
Homeo J )  /\  (
( int `  J
) `  S )  e.  J )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) " ( ( int `  J ) `
 S ) )  e.  J )
3937, 18, 38syl2anc 659 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) " ( ( int `  J ) `
 S ) )  e.  J )
4023, 39eqeltrrd 2543 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  e.  J )
41 tgpgrp 20746 . . . . . . 7  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
4224, 41syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  G  e.  Grp )
43113ad2ant2 1016 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  S  C_  ( Base `  G ) )
4443sselda 3489 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  x  e.  ( Base `  G
) )
4520, 28sseldd 3490 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  A  e.  ( Base `  G
) )
463, 35, 30grpnpcan 16332 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  A  e.  ( Base `  G
) )  ->  (
( x ( -g `  G ) A ) ( +g  `  G
) A )  =  x )
4742, 44, 45, 46syl3anc 1226 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( x ( -g `  G ) A ) ( +g  `  G
) A )  =  x )
48 ovex 6298 . . . . . 6  |-  ( ( x ( -g `  G
) A ) ( +g  `  G ) A )  e.  _V
49 eqid 2454 . . . . . . 7  |-  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  =  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )
50 oveq2 6278 . . . . . . 7  |-  ( y  =  A  ->  (
( x ( -g `  G ) A ) ( +g  `  G
) y )  =  ( ( x (
-g `  G ) A ) ( +g  `  G ) A ) )
5149, 50elrnmpt1s 5239 . . . . . 6  |-  ( ( A  e.  ( ( int `  J ) `
 S )  /\  ( ( x (
-g `  G ) A ) ( +g  `  G ) A )  e.  _V )  -> 
( ( x (
-g `  G ) A ) ( +g  `  G ) A )  e.  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) ) )
5228, 48, 51sylancl 660 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
( x ( -g `  G ) A ) ( +g  `  G
) A )  e. 
ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) )
5347, 52eqeltrrd 2543 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  x  e.  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) ) )
5410adantr 463 . . . . . . 7  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  /\  y  e.  ( ( int `  J
) `  S )
)  ->  S  e.  (SubGrp `  G ) )
5532adantr 463 . . . . . . 7  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  /\  y  e.  ( ( int `  J
) `  S )
)  ->  ( x
( -g `  G ) A )  e.  S
)
5627sselda 3489 . . . . . . 7  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  /\  y  e.  ( ( int `  J
) `  S )
)  ->  y  e.  S )
5735subgcl 16413 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x ( -g `  G
) A )  e.  S  /\  y  e.  S )  ->  (
( x ( -g `  G ) A ) ( +g  `  G
) y )  e.  S )
5854, 55, 56, 57syl3anc 1226 . . . . . 6  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  /\  y  e.  ( ( int `  J
) `  S )
)  ->  ( (
x ( -g `  G
) A ) ( +g  `  G ) y )  e.  S
)
5958, 49fmptd 6031 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  (
y  e.  ( ( int `  J ) `
 S )  |->  ( ( x ( -g `  G ) A ) ( +g  `  G
) y ) ) : ( ( int `  J ) `  S
) --> S )
60 frn 5719 . . . . 5  |-  ( ( y  e.  ( ( int `  J ) `
 S )  |->  ( ( x ( -g `  G ) A ) ( +g  `  G
) y ) ) : ( ( int `  J ) `  S
) --> S  ->  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  C_  S )
6159, 60syl 16 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  C_  S )
62 eleq2 2527 . . . . . 6  |-  ( u  =  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  -> 
( x  e.  u  <->  x  e.  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) ) ) )
63 sseq1 3510 . . . . . 6  |-  ( u  =  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  -> 
( u  C_  S  <->  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  C_  S )
)
6462, 63anbi12d 708 . . . . 5  |-  ( u  =  ran  ( y  e.  ( ( int `  J ) `  S
)  |->  ( ( x ( -g `  G
) A ) ( +g  `  G ) y ) )  -> 
( ( x  e.  u  /\  u  C_  S )  <->  ( x  e.  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  /\  ran  (
y  e.  ( ( int `  J ) `
 S )  |->  ( ( x ( -g `  G ) A ) ( +g  `  G
) y ) ) 
C_  S ) ) )
6564rspcev 3207 . . . 4  |-  ( ( ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  e.  J  /\  ( x  e.  ran  ( y  e.  ( ( int `  J
) `  S )  |->  ( ( x (
-g `  G ) A ) ( +g  `  G ) y ) )  /\  ran  (
y  e.  ( ( int `  J ) `
 S )  |->  ( ( x ( -g `  G ) A ) ( +g  `  G
) y ) ) 
C_  S ) )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  S ) )
6640, 53, 61, 65syl12anc 1224 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  ( ( int `  J
) `  S )
)  /\  x  e.  S )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  S ) )
6766ralrimiva 2868 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  A. x  e.  S  E. u  e.  J  ( x  e.  u  /\  u  C_  S ) )
68 eltop2 19647 . . 3  |-  ( J  e.  Top  ->  ( S  e.  J  <->  A. x  e.  S  E. u  e.  J  ( x  e.  u  /\  u  C_  S ) ) )
698, 68syl 16 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  ( S  e.  J  <->  A. x  e.  S  E. u  e.  J  ( x  e.  u  /\  u  C_  S ) ) )
7067, 69mpbird 232 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  A  e.  (
( int `  J
) `  S )
)  ->  S  e.  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   U.cuni 4235    |-> cmpt 4497   ran crn 4989    |` cres 4990   "cima 4991   -->wf 5566   ` cfv 5570  (class class class)co 6270   Basecbs 14719   +g cplusg 14787   TopOpenctopn 14914   Grpcgrp 16255   -gcsg 16257  SubGrpcsubg 16397   Topctop 19564  TopOnctopon 19565   intcnt 19688   Homeochmeo 20423   TopGrpctgp 20739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-topgen 14936  df-plusf 16073  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261  df-subg 16400  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-ntr 19691  df-cn 19898  df-cnp 19899  df-tx 20232  df-hmeo 20425  df-tmd 20740  df-tgp 20741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator