MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Unicode version

Theorem subgngp 18629
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgngp  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e. NrmGrp )

Proof of Theorem subgngp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4  |-  H  =  ( Gs  A )
21subggrp 14902 . . 3  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
32adantl 453 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e.  Grp )
4 ngpms 18600 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
5 ressms 18509 . . . 4  |-  ( ( G  e.  MetSp  /\  A  e.  (SubGrp `  G )
)  ->  ( Gs  A
)  e.  MetSp )
64, 5sylan 458 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  ( Gs  A
)  e.  MetSp )
71, 6syl5eqel 2488 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e.  MetSp
)
8 simplr 732 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  e.  (SubGrp `  G )
)
9 simprl 733 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  ( Base `  H
) )
101subgbas 14903 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1110ad2antlr 708 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  =  ( Base `  H
) )
129, 11eleqtrrd 2481 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  A )
13 simprr 734 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  ( Base `  H
) )
1413, 11eleqtrrd 2481 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  A )
15 eqid 2404 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
16 eqid 2404 . . . . . . 7  |-  ( -g `  H )  =  (
-g `  H )
1715, 1, 16subgsub 14911 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  x  e.  A  /\  y  e.  A )  ->  (
x ( -g `  G
) y )  =  ( x ( -g `  H ) y ) )
188, 12, 14, 17syl3anc 1184 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  G
) y )  =  ( x ( -g `  H ) y ) )
1918fveq2d 5691 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
( norm `  G ) `  ( x ( -g `  G ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
20 eqid 2404 . . . . . . . 8  |-  ( dist `  G )  =  (
dist `  G )
211, 20ressds 13596 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( dist `  G )  =  (
dist `  H )
)
2221ad2antlr 708 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  ( dist `  G )  =  ( dist `  H
) )
2322oveqd 6057 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  G
) y )  =  ( x ( dist `  H ) y ) )
24 simpll 731 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  G  e. NrmGrp )
25 eqid 2404 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
2625subgss 14900 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
2726ad2antlr 708 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  C_  ( Base `  G
) )
2827, 12sseldd 3309 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  ( Base `  G
) )
2927, 14sseldd 3309 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  ( Base `  G
) )
30 eqid 2404 . . . . . . 7  |-  ( norm `  G )  =  (
norm `  G )
3130, 25, 15, 20ngpds 18603 . . . . . 6  |-  ( ( G  e. NrmGrp  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( dist `  G )
y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
3224, 28, 29, 31syl3anc 1184 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  G
) y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
3323, 32eqtr3d 2438 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  H
) y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
34 eqid 2404 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
3534, 16grpsubcl 14824 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H
) )  ->  (
x ( -g `  H
) y )  e.  ( Base `  H
) )
36353expb 1154 . . . . . . 7  |-  ( ( H  e.  Grp  /\  ( x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) ) )  ->  ( x (
-g `  H )
y )  e.  (
Base `  H )
)
373, 36sylan 458 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  H
) y )  e.  ( Base `  H
) )
3837, 11eleqtrrd 2481 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  H
) y )  e.  A )
39 eqid 2404 . . . . . 6  |-  ( norm `  H )  =  (
norm `  H )
401, 30, 39subgnm2 18628 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  (
x ( -g `  H
) y )  e.  A )  ->  (
( norm `  H ) `  ( x ( -g `  H ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
418, 38, 40syl2anc 643 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
( norm `  H ) `  ( x ( -g `  H ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
4219, 33, 413eqtr4d 2446 . . 3  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  H
) y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) )
4342ralrimivva 2758 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  A. x  e.  ( Base `  H
) A. y  e.  ( Base `  H
) ( x (
dist `  H )
y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) )
44 eqid 2404 . . 3  |-  ( dist `  H )  =  (
dist `  H )
4539, 16, 44, 34isngp3 18598 . 2  |-  ( H  e. NrmGrp 
<->  ( H  e.  Grp  /\  H  e.  MetSp  /\  A. x  e.  ( Base `  H ) A. y  e.  ( Base `  H
) ( x (
dist `  H )
y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) ) )
463, 7, 43, 45syl3anbrc 1138 1  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e. NrmGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666    C_ wss 3280   ` cfv 5413  (class class class)co 6040   Basecbs 13424   ↾s cress 13425   distcds 13493   Grpcgrp 14640   -gcsg 14643  SubGrpcsubg 14893   MetSpcmt 18301   normcnm 18577  NrmGrpcngp 18578
This theorem is referenced by:  subrgnrg  18662  lssnlm  18689
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-tset 13503  df-ds 13506  df-rest 13605  df-topn 13606  df-topgen 13622  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-xms 18303  df-ms 18304  df-nm 18583  df-ngp 18584
  Copyright terms: Public domain W3C validator