MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Unicode version

Theorem subgngp 20196
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgngp  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e. NrmGrp )

Proof of Theorem subgngp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4  |-  H  =  ( Gs  A )
21subggrp 15675 . . 3  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
32adantl 466 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e.  Grp )
4 ngpms 20167 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
5 ressms 20076 . . . 4  |-  ( ( G  e.  MetSp  /\  A  e.  (SubGrp `  G )
)  ->  ( Gs  A
)  e.  MetSp )
64, 5sylan 471 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  ( Gs  A
)  e.  MetSp )
71, 6syl5eqel 2522 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e.  MetSp
)
8 simplr 754 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  e.  (SubGrp `  G )
)
9 simprl 755 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  ( Base `  H
) )
101subgbas 15676 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1110ad2antlr 726 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  =  ( Base `  H
) )
129, 11eleqtrrd 2515 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  A )
13 simprr 756 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  ( Base `  H
) )
1413, 11eleqtrrd 2515 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  A )
15 eqid 2438 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
16 eqid 2438 . . . . . . 7  |-  ( -g `  H )  =  (
-g `  H )
1715, 1, 16subgsub 15684 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  x  e.  A  /\  y  e.  A )  ->  (
x ( -g `  G
) y )  =  ( x ( -g `  H ) y ) )
188, 12, 14, 17syl3anc 1218 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  G
) y )  =  ( x ( -g `  H ) y ) )
1918fveq2d 5690 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
( norm `  G ) `  ( x ( -g `  G ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
20 eqid 2438 . . . . . . . 8  |-  ( dist `  G )  =  (
dist `  G )
211, 20ressds 14344 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( dist `  G )  =  (
dist `  H )
)
2221ad2antlr 726 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  ( dist `  G )  =  ( dist `  H
) )
2322oveqd 6103 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  G
) y )  =  ( x ( dist `  H ) y ) )
24 simpll 753 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  G  e. NrmGrp )
25 eqid 2438 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
2625subgss 15673 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
2726ad2antlr 726 . . . . . . 7  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  A  C_  ( Base `  G
) )
2827, 12sseldd 3352 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  x  e.  ( Base `  G
) )
2927, 14sseldd 3352 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  y  e.  ( Base `  G
) )
30 eqid 2438 . . . . . . 7  |-  ( norm `  G )  =  (
norm `  G )
3130, 25, 15, 20ngpds 20170 . . . . . 6  |-  ( ( G  e. NrmGrp  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( dist `  G )
y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
3224, 28, 29, 31syl3anc 1218 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  G
) y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
3323, 32eqtr3d 2472 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  H
) y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
34 eqid 2438 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
3534, 16grpsubcl 15597 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H
) )  ->  (
x ( -g `  H
) y )  e.  ( Base `  H
) )
36353expb 1188 . . . . . . 7  |-  ( ( H  e.  Grp  /\  ( x  e.  ( Base `  H )  /\  y  e.  ( Base `  H ) ) )  ->  ( x (
-g `  H )
y )  e.  (
Base `  H )
)
373, 36sylan 471 . . . . . 6  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  H
) y )  e.  ( Base `  H
) )
3837, 11eleqtrrd 2515 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( -g `  H
) y )  e.  A )
39 eqid 2438 . . . . . 6  |-  ( norm `  H )  =  (
norm `  H )
401, 30, 39subgnm2 20195 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  (
x ( -g `  H
) y )  e.  A )  ->  (
( norm `  H ) `  ( x ( -g `  H ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
418, 38, 40syl2anc 661 . . . 4  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
( norm `  H ) `  ( x ( -g `  H ) y ) )  =  ( (
norm `  G ) `  ( x ( -g `  H ) y ) ) )
4219, 33, 413eqtr4d 2480 . . 3  |-  ( ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  /\  ( x  e.  ( Base `  H
)  /\  y  e.  ( Base `  H )
) )  ->  (
x ( dist `  H
) y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) )
4342ralrimivva 2803 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  A. x  e.  ( Base `  H
) A. y  e.  ( Base `  H
) ( x (
dist `  H )
y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) )
44 eqid 2438 . . 3  |-  ( dist `  H )  =  (
dist `  H )
4539, 16, 44, 34isngp3 20165 . 2  |-  ( H  e. NrmGrp 
<->  ( H  e.  Grp  /\  H  e.  MetSp  /\  A. x  e.  ( Base `  H ) A. y  e.  ( Base `  H
) ( x (
dist `  H )
y )  =  ( ( norm `  H
) `  ( x
( -g `  H ) y ) ) ) )
463, 7, 43, 45syl3anbrc 1172 1  |-  ( ( G  e. NrmGrp  /\  A  e.  (SubGrp `  G )
)  ->  H  e. NrmGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    C_ wss 3323   ` cfv 5413  (class class class)co 6086   Basecbs 14166   ↾s cress 14167   distcds 14239   Grpcgrp 15402   -gcsg 15405  SubGrpcsubg 15666   MetSpcmt 19868   normcnm 20144  NrmGrpcngp 20145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-tset 14249  df-ds 14252  df-rest 14353  df-topn 14354  df-0g 14372  df-topgen 14374  df-mnd 15407  df-grp 15536  df-minusg 15537  df-sbg 15538  df-subg 15669  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-xms 19870  df-ms 19871  df-nm 20150  df-ngp 20151
This theorem is referenced by:  subrgnrg  20229  lssnlm  20256
  Copyright terms: Public domain W3C validator