MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Unicode version

Theorem subgga 15032
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1  |-  X  =  ( Base `  G
)
subgga.2  |-  .+  =  ( +g  `  G )
subgga.3  |-  H  =  ( Gs  Y )
subgga.4  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
Assertion
Ref Expression
subgga  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Distinct variable groups:    x, y, G    x, X, y    x, Y, y    x,  .+ , y
Allowed substitution hints:    F( x, y)    H( x, y)

Proof of Theorem subgga
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4  |-  H  =  ( Gs  Y )
21subggrp 14902 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  H  e.  Grp )
3 subgga.1 . . . 4  |-  X  =  ( Base `  G
)
4 fvex 5701 . . . 4  |-  ( Base `  G )  e.  _V
53, 4eqeltri 2474 . . 3  |-  X  e. 
_V
62, 5jctir 525 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( H  e.  Grp  /\  X  e. 
_V ) )
7 subgrcl 14904 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
87adantr 452 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  G  e.  Grp )
93subgss 14900 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
109sselda 3308 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  Y )  ->  x  e.  X )
1110adantrr 698 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  x  e.  X )
12 simprr 734 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  y  e.  X )
13 subgga.2 . . . . . . . 8  |-  .+  =  ( +g  `  G )
143, 13grpcl 14773 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x  .+  y
)  e.  X )
158, 11, 12, 14syl3anc 1184 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  ( x  .+  y )  e.  X
)
1615ralrimivva 2758 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  A. x  e.  Y  A. y  e.  X  ( x  .+  y )  e.  X
)
17 subgga.4 . . . . . 6  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
1817fmpt2 6377 . . . . 5  |-  ( A. x  e.  Y  A. y  e.  X  (
x  .+  y )  e.  X  <->  F : ( Y  X.  X ) --> X )
1916, 18sylib 189 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( Y  X.  X
) --> X )
201subgbas 14903 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  =  ( Base `  H )
)
2120xpeq1d 4860 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Y  X.  X )  =  ( ( Base `  H
)  X.  X ) )
2221feq2d 5540 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( Y  X.  X ) --> X  <->  F :
( ( Base `  H
)  X.  X ) --> X ) )
2319, 22mpbid 202 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( ( Base `  H
)  X.  X ) --> X )
24 eqid 2404 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
2524subg0cl 14907 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
26 oveq12 6049 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( 0g `  G ) 
.+  u ) )
27 ovex 6065 . . . . . . . 8  |-  ( ( 0g `  G ) 
.+  u )  e. 
_V
2826, 17, 27ovmpt2a 6163 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  Y  /\  u  e.  X )  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  G ) 
.+  u ) )
2925, 28sylan 458 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  G )  .+  u ) )
301, 24subg0 14905 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3130oveq1d 6055 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  H
) F u ) )
3231adantr 452 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  H ) F u ) )
333, 13, 24grplid 14790 . . . . . . 7  |-  ( ( G  e.  Grp  /\  u  e.  X )  ->  ( ( 0g `  G )  .+  u
)  =  u )
347, 33sylan 458 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
)  .+  u )  =  u )
3529, 32, 343eqtr3d 2444 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  H
) F u )  =  u )
367ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  G  e.  Grp )
379ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  Y  C_  X
)
38 simprl 733 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  Y )
3937, 38sseldd 3309 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  X )
40 simprr 734 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  Y )
4137, 40sseldd 3309 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  X )
42 simplr 732 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  u  e.  X )
433, 13grpass 14774 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( v  e.  X  /\  w  e.  X  /\  u  e.  X
) )  ->  (
( v  .+  w
)  .+  u )  =  ( v  .+  ( w  .+  u ) ) )
4436, 39, 41, 42, 43syl13anc 1186 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v  .+  ( w 
.+  u ) ) )
453, 13grpcl 14773 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  u  e.  X )  ->  ( w  .+  u
)  e.  X )
4636, 41, 42, 45syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w  .+  u )  e.  X
)
47 oveq12 6049 . . . . . . . . . . 11  |-  ( ( x  =  v  /\  y  =  ( w  .+  u ) )  -> 
( x  .+  y
)  =  ( v 
.+  ( w  .+  u ) ) )
48 ovex 6065 . . . . . . . . . . 11  |-  ( v 
.+  ( w  .+  u ) )  e. 
_V
4947, 17, 48ovmpt2a 6163 . . . . . . . . . 10  |-  ( ( v  e.  Y  /\  ( w  .+  u )  e.  X )  -> 
( v F ( w  .+  u ) )  =  ( v 
.+  ( w  .+  u ) ) )
5038, 46, 49syl2anc 643 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w  .+  u ) )  =  ( v  .+  (
w  .+  u )
) )
5144, 50eqtr4d 2439 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v F ( w 
.+  u ) ) )
5213subgcl 14909 . . . . . . . . . . 11  |-  ( ( Y  e.  (SubGrp `  G )  /\  v  e.  Y  /\  w  e.  Y )  ->  (
v  .+  w )  e.  Y )
53523expb 1154 . . . . . . . . . 10  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
5453adantlr 696 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
55 oveq12 6049 . . . . . . . . . 10  |-  ( ( x  =  ( v 
.+  w )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( v  .+  w ) 
.+  u ) )
56 ovex 6065 . . . . . . . . . 10  |-  ( ( v  .+  w ) 
.+  u )  e. 
_V
5755, 17, 56ovmpt2a 6163 . . . . . . . . 9  |-  ( ( ( v  .+  w
)  e.  Y  /\  u  e.  X )  ->  ( ( v  .+  w ) F u )  =  ( ( v  .+  w ) 
.+  u ) )
5854, 42, 57syl2anc 643 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( ( v  .+  w )  .+  u
) )
59 oveq12 6049 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  u )  ->  ( x  .+  y
)  =  ( w 
.+  u ) )
60 ovex 6065 . . . . . . . . . . 11  |-  ( w 
.+  u )  e. 
_V
6159, 17, 60ovmpt2a 6163 . . . . . . . . . 10  |-  ( ( w  e.  Y  /\  u  e.  X )  ->  ( w F u )  =  ( w 
.+  u ) )
6240, 42, 61syl2anc 643 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w F u )  =  ( w  .+  u
) )
6362oveq2d 6056 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w F u ) )  =  ( v F ( w  .+  u ) ) )
6451, 58, 633eqtr4d 2446 . . . . . . 7  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
6564ralrimivva 2758 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  Y  A. w  e.  Y  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
661, 13ressplusg 13526 . . . . . . . . . . . 12  |-  ( Y  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
6766oveqd 6057 . . . . . . . . . . 11  |-  ( Y  e.  (SubGrp `  G
)  ->  ( v  .+  w )  =  ( v ( +g  `  H
) w ) )
6867oveq1d 6055 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
v  .+  w ) F u )  =  ( ( v ( +g  `  H ) w ) F u ) )
6968eqeq1d 2412 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  ( (
v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7020, 69raleqbidv 2876 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7120, 70raleqbidv 2876 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7271biimpa 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) ) )  ->  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H ) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7365, 72syldan 457 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7435, 73jca 519 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7574ralrimiva 2749 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  A. u  e.  X  ( (
( 0g `  H
) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7623, 75jca 519 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) )
77 eqid 2404 . . 3  |-  ( Base `  H )  =  (
Base `  H )
78 eqid 2404 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
79 eqid 2404 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
8077, 78, 79isga 15023 . 2  |-  ( F  e.  ( H  GrpAct  X )  <->  ( ( H  e.  Grp  /\  X  e.  _V )  /\  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) ) )
816, 76, 80sylanbrc 646 1  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Basecbs 13424   ↾s cress 13425   +g cplusg 13484   0gc0g 13678   Grpcgrp 14640  SubGrpcsubg 14893    GrpAct cga 15021
This theorem is referenced by:  gaid2  15035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-subg 14896  df-ga 15022
  Copyright terms: Public domain W3C validator