Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem6 Structured version   Unicode version

Theorem subfacp1lem6 27003
Description: Lemma for subfacp1 27004. By induction, we cut up the set of all derangements on  N  +  1 according to the  N possible values of  ( f ` 
1 ) (since  ( f `  1 )  =/=  1), and for each set for fixed  M  =  ( f `  1 ), the subset of derangements with  ( f `  M )  =  1 has size  S ( N  - 
1 ) (by subfacp1lem3 27000), while the subset with  ( f `  M
)  =/=  1 has size  S
( N ) (by subfacp1lem5 27002). Adding it all up yields the desired equation  N ( S ( N )  +  S ( N  - 
1 ) ) for the number of derangements on  N  +  1. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
Assertion
Ref Expression
subfacp1lem6  |-  ( N  e.  NN  ->  ( S `  ( N  +  1 ) )  =  ( N  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
Distinct variable groups:    f, n, x, y, A    f, N, n, x, y    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfacp1lem6
Dummy variables  g  h  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 10330 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
21nnnn0d 10632 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
3 derang.d . . . . 5  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
4 subfac.n . . . . 5  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
53, 4subfacval 26991 . . . 4  |-  ( ( N  +  1 )  e.  NN0  ->  ( S `
 ( N  + 
1 ) )  =  ( D `  (
1 ... ( N  + 
1 ) ) ) )
62, 5syl 16 . . 3  |-  ( N  e.  NN  ->  ( S `  ( N  +  1 ) )  =  ( D `  ( 1 ... ( N  +  1 ) ) ) )
7 fzfid 11791 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
83derangval 26985 . . . . 5  |-  ( ( 1 ... ( N  +  1 ) )  e.  Fin  ->  ( D `  ( 1 ... ( N  +  1 ) ) )  =  ( # `  {
f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) } ) )
97, 8syl 16 . . . 4  |-  ( N  e.  NN  ->  ( D `  ( 1 ... ( N  +  1 ) ) )  =  ( # `  {
f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) } ) )
10 subfacp1lem.a . . . . 5  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
1110fveq2i 5691 . . . 4  |-  ( # `  A )  =  (
# `  { f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) } )
129, 11syl6eqr 2491 . . 3  |-  ( N  e.  NN  ->  ( D `  ( 1 ... ( N  +  1 ) ) )  =  ( # `  A
) )
13 nnuz 10892 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
141, 13syl6eleq 2531 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
15 eluzfz1 11454 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( N  +  1 ) ) )
1614, 15syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  ( 1 ... ( N  +  1 ) ) )
17 f1of 5638 . . . . . . . . . 10  |-  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  f :
( 1 ... ( N  +  1 ) ) --> ( 1 ... ( N  +  1 ) ) )
1817adantr 462 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y )  -> 
f : ( 1 ... ( N  + 
1 ) ) --> ( 1 ... ( N  +  1 ) ) )
19 ffvelrn 5838 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( N  + 
1 ) ) --> ( 1 ... ( N  +  1 ) )  /\  1  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( f `  1 )  e.  ( 1 ... ( N  +  1 ) ) )
2019expcom 435 . . . . . . . . 9  |-  ( 1  e.  ( 1 ... ( N  +  1 ) )  ->  (
f : ( 1 ... ( N  + 
1 ) ) --> ( 1 ... ( N  +  1 ) )  ->  ( f ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
2116, 18, 20syl2im 38 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
)  ->  ( f `  1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
2221ss2abdv 3422 . . . . . . 7  |-  ( N  e.  NN  ->  { f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) }  C_  { f  |  ( f ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) } )
23 fveq1 5687 . . . . . . . . 9  |-  ( g  =  f  ->  (
g `  1 )  =  ( f ` 
1 ) )
2423eleq1d 2507 . . . . . . . 8  |-  ( g  =  f  ->  (
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) )  <->  ( f `  1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
2524cbvabv 2560 . . . . . . 7  |-  { g  |  ( g ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) }  =  { f  |  ( f ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) }
2622, 10, 253sstr4g 3394 . . . . . 6  |-  ( N  e.  NN  ->  A  C_ 
{ g  |  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) } )
27 ssabral 3420 . . . . . 6  |-  ( A 
C_  { g  |  ( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) }  <->  A. g  e.  A  ( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) )
2826, 27sylib 196 . . . . 5  |-  ( N  e.  NN  ->  A. g  e.  A  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) )
29 rabid2 2896 . . . . 5  |-  ( A  =  { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... ( N  +  1 ) ) }  <->  A. g  e.  A  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) )
3028, 29sylibr 212 . . . 4  |-  ( N  e.  NN  ->  A  =  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) } )
3130fveq2d 5692 . . 3  |-  ( N  e.  NN  ->  ( # `
 A )  =  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) } ) )
326, 12, 313eqtrd 2477 . 2  |-  ( N  e.  NN  ->  ( S `  ( N  +  1 ) )  =  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) } ) )
33 elfz1end 11475 . . . 4  |-  ( ( N  +  1 )  e.  NN  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
341, 33sylib 196 . . 3  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
35 eleq1 2501 . . . . . . 7  |-  ( x  =  1  ->  (
x  e.  ( 1 ... ( N  + 
1 ) )  <->  1  e.  ( 1 ... ( N  +  1 ) ) ) )
36 oveq2 6098 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
1 ... x )  =  ( 1 ... 1
) )
37 1z 10672 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
38 fzsn 11496 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
3937, 38ax-mp 5 . . . . . . . . . . . . 13  |-  ( 1 ... 1 )  =  { 1 }
4036, 39syl6eq 2489 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
1 ... x )  =  { 1 } )
4140eleq2d 2508 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( g `  1
)  e.  ( 1 ... x )  <->  ( g `  1 )  e. 
{ 1 } ) )
42 fvex 5698 . . . . . . . . . . . 12  |-  ( g `
 1 )  e. 
_V
4342elsnc 3898 . . . . . . . . . . 11  |-  ( ( g `  1 )  e.  { 1 }  <-> 
( g `  1
)  =  1 )
4441, 43syl6bb 261 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( g `  1
)  e.  ( 1 ... x )  <->  ( g `  1 )  =  1 ) )
4544rabbidv 2962 . . . . . . . . 9  |-  ( x  =  1  ->  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) }  =  { g  e.  A  |  ( g ` 
1 )  =  1 } )
4645fveq2d 5692 . . . . . . . 8  |-  ( x  =  1  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... x
) } )  =  ( # `  {
g  e.  A  | 
( g `  1
)  =  1 } ) )
47 oveq1 6097 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  -  1 )  =  ( 1  -  1 ) )
48 1m1e0 10386 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4947, 48syl6eq 2489 . . . . . . . . 9  |-  ( x  =  1  ->  (
x  -  1 )  =  0 )
5049oveq1d 6105 . . . . . . . 8  |-  ( x  =  1  ->  (
( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  ( 0  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
5146, 50eqeq12d 2455 . . . . . . 7  |-  ( x  =  1  ->  (
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  <->  ( # `  {
g  e.  A  | 
( g `  1
)  =  1 } )  =  ( 0  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
5235, 51imbi12d 320 . . . . . 6  |-  ( x  =  1  ->  (
( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  <-> 
( 1  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  =  1 } )  =  ( 0  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
5352imbi2d 316 . . . . 5  |-  ( x  =  1  ->  (
( N  e.  NN  ->  ( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )  <->  ( N  e.  NN  ->  ( 1  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  =  1 } )  =  ( 0  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) ) ) ) )
54 eleq1 2501 . . . . . . 7  |-  ( x  =  m  ->  (
x  e.  ( 1 ... ( N  + 
1 ) )  <->  m  e.  ( 1 ... ( N  +  1 ) ) ) )
55 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  m  ->  (
1 ... x )  =  ( 1 ... m
) )
5655eleq2d 2508 . . . . . . . . . 10  |-  ( x  =  m  ->  (
( g `  1
)  e.  ( 1 ... x )  <->  ( g `  1 )  e.  ( 1 ... m
) ) )
5756rabbidv 2962 . . . . . . . . 9  |-  ( x  =  m  ->  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) }  =  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) } )
5857fveq2d 5692 . . . . . . . 8  |-  ( x  =  m  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... x
) } )  =  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } ) )
59 oveq1 6097 . . . . . . . . 9  |-  ( x  =  m  ->  (
x  -  1 )  =  ( m  - 
1 ) )
6059oveq1d 6105 . . . . . . . 8  |-  ( x  =  m  ->  (
( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
6158, 60eqeq12d 2455 . . . . . . 7  |-  ( x  =  m  ->  (
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  <->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
6254, 61imbi12d 320 . . . . . 6  |-  ( x  =  m  ->  (
( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  <-> 
( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
6362imbi2d 316 . . . . 5  |-  ( x  =  m  ->  (
( N  e.  NN  ->  ( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )  <->  ( N  e.  NN  ->  ( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) ) )
64 eleq1 2501 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  (
x  e.  ( 1 ... ( N  + 
1 ) )  <->  ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
65 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  ( m  + 
1 )  ->  (
1 ... x )  =  ( 1 ... (
m  +  1 ) ) )
6665eleq2d 2508 . . . . . . . . . 10  |-  ( x  =  ( m  + 
1 )  ->  (
( g `  1
)  e.  ( 1 ... x )  <->  ( g `  1 )  e.  ( 1 ... (
m  +  1 ) ) ) )
6766rabbidv 2962 . . . . . . . . 9  |-  ( x  =  ( m  + 
1 )  ->  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) }  =  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... ( m  +  1 ) ) } )
6867fveq2d 5692 . . . . . . . 8  |-  ( x  =  ( m  + 
1 )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... x
) } )  =  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } ) )
69 oveq1 6097 . . . . . . . . 9  |-  ( x  =  ( m  + 
1 )  ->  (
x  -  1 )  =  ( ( m  +  1 )  - 
1 ) )
7069oveq1d 6105 . . . . . . . 8  |-  ( x  =  ( m  + 
1 )  ->  (
( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
7168, 70eqeq12d 2455 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  (
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  <->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
7264, 71imbi12d 320 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  (
( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  <-> 
( ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
7372imbi2d 316 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  (
( N  e.  NN  ->  ( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )  <->  ( N  e.  NN  ->  ( (
m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... (
m  +  1 ) ) } )  =  ( ( ( m  +  1 )  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) ) ) ) )
74 eleq1 2501 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (
x  e.  ( 1 ... ( N  + 
1 ) )  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
75 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  ( N  + 
1 )  ->  (
1 ... x )  =  ( 1 ... ( N  +  1 ) ) )
7675eleq2d 2508 . . . . . . . . . 10  |-  ( x  =  ( N  + 
1 )  ->  (
( g `  1
)  e.  ( 1 ... x )  <->  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) ) )
7776rabbidv 2962 . . . . . . . . 9  |-  ( x  =  ( N  + 
1 )  ->  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) }  =  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... ( N  +  1 ) ) } )
7877fveq2d 5692 . . . . . . . 8  |-  ( x  =  ( N  + 
1 )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... x
) } )  =  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) } ) )
79 oveq1 6097 . . . . . . . . 9  |-  ( x  =  ( N  + 
1 )  ->  (
x  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
8079oveq1d 6105 . . . . . . . 8  |-  ( x  =  ( N  + 
1 )  ->  (
( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  ( ( ( N  +  1 )  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
8178, 80eqeq12d 2455 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  <->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) } )  =  ( ( ( N  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
8274, 81imbi12d 320 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (
( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  <-> 
( ( N  + 
1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( N  + 
1 ) ) } )  =  ( ( ( N  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
8382imbi2d 316 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
( N  e.  NN  ->  ( x  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... x ) } )  =  ( ( x  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )  <->  ( N  e.  NN  ->  ( ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... ( N  +  1 ) ) } )  =  ( ( ( N  +  1 )  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) ) ) ) )
84 hash0 12131 . . . . . . 7  |-  ( # `  (/) )  =  0
85 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( y  =  1  ->  (
f `  y )  =  ( f ` 
1 ) )
86 id 22 . . . . . . . . . . . . . . . 16  |-  ( y  =  1  ->  y  =  1 )
8785, 86neeq12d 2621 . . . . . . . . . . . . . . 15  |-  ( y  =  1  ->  (
( f `  y
)  =/=  y  <->  ( f `  1 )  =/=  1 ) )
8887rspcv 3066 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( 1 ... ( N  +  1 ) )  ->  ( A. y  e.  (
1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y  ->  (
f `  1 )  =/=  1 ) )
8916, 88syl 16 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( A. y  e.  (
1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y  ->  (
f `  1 )  =/=  1 ) )
9089adantld 464 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
)  ->  ( f `  1 )  =/=  1 ) )
9190ss2abdv 3422 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  { f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) }  C_  { f  |  ( f ` 
1 )  =/=  1 } )
92 df-ne 2606 . . . . . . . . . . . . 13  |-  ( ( g `  1 )  =/=  1  <->  -.  (
g `  1 )  =  1 )
9323neeq1d 2619 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
( g `  1
)  =/=  1  <->  (
f `  1 )  =/=  1 ) )
9492, 93syl5bbr 259 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( -.  ( g `  1
)  =  1  <->  (
f `  1 )  =/=  1 ) )
9594cbvabv 2560 . . . . . . . . . . 11  |-  { g  |  -.  ( g `
 1 )  =  1 }  =  {
f  |  ( f `
 1 )  =/=  1 }
9691, 10, 953sstr4g 3394 . . . . . . . . . 10  |-  ( N  e.  NN  ->  A  C_ 
{ g  |  -.  ( g `  1
)  =  1 } )
97 ssabral 3420 . . . . . . . . . 10  |-  ( A 
C_  { g  |  -.  ( g ` 
1 )  =  1 }  <->  A. g  e.  A  -.  ( g `  1
)  =  1 )
9896, 97sylib 196 . . . . . . . . 9  |-  ( N  e.  NN  ->  A. g  e.  A  -.  (
g `  1 )  =  1 )
99 rabeq0 3656 . . . . . . . . 9  |-  ( { g  e.  A  | 
( g `  1
)  =  1 }  =  (/)  <->  A. g  e.  A  -.  ( g `  1
)  =  1 )
10098, 99sylibr 212 . . . . . . . 8  |-  ( N  e.  NN  ->  { g  e.  A  |  ( g `  1 )  =  1 }  =  (/) )
101100fveq2d 5692 . . . . . . 7  |-  ( N  e.  NN  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  =  1 } )  =  ( # `  (/) ) )
102 nnnn0 10582 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
1033, 4subfacf 26993 . . . . . . . . . . . 12  |-  S : NN0
--> NN0
104103ffvelrni 5839 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
105102, 104syl 16 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
106 nnm1nn0 10617 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
107103ffvelrni 5839 . . . . . . . . . . 11  |-  ( ( N  -  1 )  e.  NN0  ->  ( S `
 ( N  - 
1 ) )  e. 
NN0 )
108106, 107syl 16 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( S `  ( N  -  1 ) )  e.  NN0 )
109105, 108nn0addcld 10636 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) )  e.  NN0 )
110109nn0cnd 10634 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) )  e.  CC )
111110mul02d 9563 . . . . . . 7  |-  ( N  e.  NN  ->  (
0  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  0 )
11284, 101, 1113eqtr4a 2499 . . . . . 6  |-  ( N  e.  NN  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  =  1 } )  =  ( 0  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) )
113112a1d 25 . . . . 5  |-  ( N  e.  NN  ->  (
1  e.  ( 1 ... ( N  + 
1 ) )  -> 
( # `  { g  e.  A  |  ( g `  1 )  =  1 } )  =  ( 0  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
114 simplr 749 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  m  e.  NN )
115114, 13syl6eleq 2531 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  m  e.  ( ZZ>= `  1 )
)
116 peano2fzr 11459 . . . . . . . . . . 11  |-  ( ( m  e.  ( ZZ>= ` 
1 )  /\  (
m  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  m  e.  ( 1 ... ( N  + 
1 ) ) )
117115, 116sylancom 662 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  m  e.  ( 1 ... ( N  +  1 ) ) )
118117ex 434 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) )  ->  m  e.  ( 1 ... ( N  +  1 ) ) ) )
119118imim1d 75 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  ->  ( ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
120 oveq1 6097 . . . . . . . . . . 11  |-  ( (
# `  { g  e.  A  |  (
g `  1 )  e.  ( 1 ... m
) } )  =  ( ( m  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) )  ->  ( ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... m
) } )  +  ( # `  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) )  =  ( ( ( m  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) )  +  ( # `  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) } ) ) )
121 elfzp1 11501 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( ZZ>= `  1
)  ->  ( (
g `  1 )  e.  ( 1 ... (
m  +  1 ) )  <->  ( ( g `
 1 )  e.  ( 1 ... m
)  \/  ( g `
 1 )  =  ( m  +  1 ) ) ) )
122115, 121syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
g `  1 )  e.  ( 1 ... (
m  +  1 ) )  <->  ( ( g `
 1 )  e.  ( 1 ... m
)  \/  ( g `
 1 )  =  ( m  +  1 ) ) ) )
123122rabbidv 2962 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  { g  e.  A  |  (
g `  1 )  e.  ( 1 ... (
m  +  1 ) ) }  =  {
g  e.  A  | 
( ( g ` 
1 )  e.  ( 1 ... m )  \/  ( g ` 
1 )  =  ( m  +  1 ) ) } )
124 unrab 3618 . . . . . . . . . . . . . . 15  |-  ( { g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) }  u.  { g  e.  A  |  ( g `
 1 )  =  ( m  +  1 ) } )  =  { g  e.  A  |  ( ( g `
 1 )  e.  ( 1 ... m
)  \/  ( g `
 1 )  =  ( m  +  1 ) ) }
125123, 124syl6eqr 2491 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  { g  e.  A  |  (
g `  1 )  e.  ( 1 ... (
m  +  1 ) ) }  =  ( { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) }  u.  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) } ) )
126125fveq2d 5692 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( # `  ( { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... m
) }  u.  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) ) )
127 fzfi 11790 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( N  + 
1 ) )  e. 
Fin
128 deranglem 26984 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( N  +  1 ) )  e.  Fin  ->  { f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) }  e.  Fin )
129127, 128ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { f  |  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  A. y  e.  ( 1 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) }  e.  Fin
13010, 129eqeltri 2511 . . . . . . . . . . . . . . 15  |-  A  e. 
Fin
131 ssrab2 3434 . . . . . . . . . . . . . . 15  |-  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... m ) }  C_  A
132 ssfi 7529 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Fin  /\  { g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } 
C_  A )  ->  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) }  e.  Fin )
133130, 131, 132mp2an 667 . . . . . . . . . . . . . 14  |-  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... m ) }  e.  Fin
134 ssrab2 3434 . . . . . . . . . . . . . . 15  |-  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) }  C_  A
135 ssfi 7529 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Fin  /\  { g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } 
C_  A )  ->  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) }  e.  Fin )
136130, 134, 135mp2an 667 . . . . . . . . . . . . . 14  |-  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) }  e.  Fin
137 inrab 3619 . . . . . . . . . . . . . . 15  |-  ( { g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) }  i^i  { g  e.  A  |  ( g `
 1 )  =  ( m  +  1 ) } )  =  { g  e.  A  |  ( ( g `
 1 )  e.  ( 1 ... m
)  /\  ( g `  1 )  =  ( m  +  1 ) ) }
138 fzp1disj 11511 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... m )  i^i  { ( m  +  1 ) } )  =  (/)
13942elsnc 3898 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  1 )  e.  { ( m  +  1 ) }  <-> 
( g `  1
)  =  ( m  +  1 ) )
140 inelcm 3730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g `  1
)  e.  ( 1 ... m )  /\  ( g `  1
)  e.  { ( m  +  1 ) } )  ->  (
( 1 ... m
)  i^i  { (
m  +  1 ) } )  =/=  (/) )
141139, 140sylan2br 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g `  1
)  e.  ( 1 ... m )  /\  ( g `  1
)  =  ( m  +  1 ) )  ->  ( ( 1 ... m )  i^i 
{ ( m  + 
1 ) } )  =/=  (/) )
142141necon2bi 2655 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... m
)  i^i  { (
m  +  1 ) } )  =  (/)  ->  -.  ( ( g `
 1 )  e.  ( 1 ... m
)  /\  ( g `  1 )  =  ( m  +  1 ) ) )
143138, 142ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  -.  (
( g `  1
)  e.  ( 1 ... m )  /\  ( g `  1
)  =  ( m  +  1 ) )
144143rgenw 2781 . . . . . . . . . . . . . . . 16  |-  A. g  e.  A  -.  (
( g `  1
)  e.  ( 1 ... m )  /\  ( g `  1
)  =  ( m  +  1 ) )
145 rabeq0 3656 . . . . . . . . . . . . . . . 16  |-  ( { g  e.  A  | 
( ( g ` 
1 )  e.  ( 1 ... m )  /\  ( g ` 
1 )  =  ( m  +  1 ) ) }  =  (/)  <->  A. g  e.  A  -.  ( ( g ` 
1 )  e.  ( 1 ... m )  /\  ( g ` 
1 )  =  ( m  +  1 ) ) )
146144, 145mpbir 209 . . . . . . . . . . . . . . 15  |-  { g  e.  A  |  ( ( g `  1
)  e.  ( 1 ... m )  /\  ( g `  1
)  =  ( m  +  1 ) ) }  =  (/)
147137, 146eqtri 2461 . . . . . . . . . . . . . 14  |-  ( { g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) }  i^i  { g  e.  A  |  ( g `
 1 )  =  ( m  +  1 ) } )  =  (/)
148 hashun 12141 . . . . . . . . . . . . . 14  |-  ( ( { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) }  e.  Fin  /\  { g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) }  e.  Fin  /\  ( { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) }  i^i  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) } )  =  (/) )  ->  ( # `
 ( { g  e.  A  |  ( g `  1 )  e.  ( 1 ... m ) }  u.  { g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) )  =  ( ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  +  ( # `  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) } ) ) )
149133, 136, 147, 148mp3an 1309 . . . . . . . . . . . . 13  |-  ( # `  ( { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... m
) }  u.  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) )  =  ( ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  +  ( # `  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) } ) )
150126, 149syl6eq 2489 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( (
# `  { g  e.  A  |  (
g `  1 )  e.  ( 1 ... m
) } )  +  ( # `  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) ) )
151 nncn 10326 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
152151ad2antlr 721 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  m  e.  CC )
153 ax-1cn 9336 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
154153a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  1  e.  CC )
155152, 154, 154addsubd 9736 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
m  +  1 )  -  1 )  =  ( ( m  - 
1 )  +  1 ) )
156155oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) )  =  ( ( ( m  -  1 )  +  1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) )
157 subcl 9605 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( m  -  1 )  e.  CC )
158152, 153, 157sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( m  -  1 )  e.  CC )
159109ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ( S `  N )  +  ( S `  ( N  -  1
) ) )  e. 
NN0 )
160159nn0cnd 10634 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ( S `  N )  +  ( S `  ( N  -  1
) ) )  e.  CC )
161158, 154, 160adddird 9407 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
( m  -  1 )  +  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) )  =  ( ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  +  ( 1  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) ) ) )
162160mulid2d 9400 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( 1  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) )  =  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )
163 exmidne 2612 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( g `  ( m  +  1 ) )  =  1  \/  (
g `  ( m  +  1 ) )  =/=  1 )
164 orcom 387 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( g `  (
m  +  1 ) )  =  1  \/  ( g `  (
m  +  1 ) )  =/=  1 )  <-> 
( ( g `  ( m  +  1
) )  =/=  1  \/  ( g `  (
m  +  1 ) )  =  1 ) )
165163, 164mpbi 208 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g `  ( m  +  1 ) )  =/=  1  \/  (
g `  ( m  +  1 ) )  =  1 )
166165biantru 502 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( g `  1 )  =  ( m  + 
1 )  <->  ( (
g `  1 )  =  ( m  + 
1 )  /\  (
( g `  (
m  +  1 ) )  =/=  1  \/  ( g `  (
m  +  1 ) )  =  1 ) ) )
167 andi 857 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( g `  1
)  =  ( m  +  1 )  /\  ( ( g `  ( m  +  1
) )  =/=  1  \/  ( g `  (
m  +  1 ) )  =  1 ) )  <->  ( ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 )  \/  ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) ) )
168166, 167bitri 249 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g `  1 )  =  ( m  + 
1 )  <->  ( (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 )  \/  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =  1 ) ) )
169168a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  e.  A  ->  (
( g `  1
)  =  ( m  +  1 )  <->  ( (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 )  \/  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =  1 ) ) ) )
170169rabbiia 2959 . . . . . . . . . . . . . . . . . . 19  |-  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) }  =  { g  e.  A  |  ( ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 )  \/  ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) ) }
171 unrab 3618 . . . . . . . . . . . . . . . . . . 19  |-  ( { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) }  u.  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )  =  { g  e.  A  |  ( ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 )  \/  ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) ) }
172170, 171eqtr4i 2464 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  A  |  ( g `  1 )  =  ( m  + 
1 ) }  =  ( { g  e.  A  |  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =/=  1 ) }  u.  { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )
173172fveq2i 5691 . . . . . . . . . . . . . . . . 17  |-  ( # `  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) } )  =  (
# `  ( {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) }  u.  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } ) )
174 ssrab2 3434 . . . . . . . . . . . . . . . . . . 19  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 ) }  C_  A
175 ssfi 7529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  Fin  /\  { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) }  C_  A
)  ->  { g  e.  A  |  (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 ) }  e.  Fin )
176130, 174, 175mp2an 667 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 ) }  e.  Fin
177 ssrab2 3434 . . . . . . . . . . . . . . . . . . 19  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) }  C_  A
178 ssfi 7529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  Fin  /\  { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) }  C_  A
)  ->  { g  e.  A  |  (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) }  e.  Fin )
179130, 177, 178mp2an 667 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) }  e.  Fin
180 inrab 3619 . . . . . . . . . . . . . . . . . . 19  |-  ( { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) }  i^i  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )  =  { g  e.  A  |  ( ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 )  /\  ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) ) }
181 simpr 458 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 )  ->  ( g `  ( m  +  1
) )  =  1 )
182181necon3ai 2649 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g `  ( m  +  1 ) )  =/=  1  ->  -.  ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) )
183182adantl 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 )  ->  -.  ( (
g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) )
184 imnan 422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
)  ->  -.  (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) )  <->  -.  ( (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 )  /\  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =  1 ) ) )
185183, 184mpbi 208 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  (
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
)  /\  ( (
g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) )
186185rgenw 2781 . . . . . . . . . . . . . . . . . . . 20  |-  A. g  e.  A  -.  (
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
)  /\  ( (
g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) )
187 rabeq0 3656 . . . . . . . . . . . . . . . . . . . 20  |-  ( { g  e.  A  | 
( ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =/=  1 )  /\  (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) ) }  =  (/)  <->  A. g  e.  A  -.  ( ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =/=  1 )  /\  (
( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) ) )
188186, 187mpbir 209 . . . . . . . . . . . . . . . . . . 19  |-  { g  e.  A  |  ( ( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
)  /\  ( (
g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) ) }  =  (/)
189180, 188eqtri 2461 . . . . . . . . . . . . . . . . . 18  |-  ( { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) }  i^i  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )  =  (/)
190 hashun 12141 . . . . . . . . . . . . . . . . . 18  |-  ( ( { g  e.  A  |  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =/=  1 ) }  e.  Fin  /\  { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) }  e.  Fin  /\  ( { g  e.  A  |  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =/=  1 ) }  i^i  { g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )  =  (/) )  ->  ( # `  ( { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 ) }  u.  { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) } ) )  =  ( ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) } )  +  ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } ) ) )
191176, 179, 189, 190mp3an 1309 . . . . . . . . . . . . . . . . 17  |-  ( # `  ( { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 ) }  u.  { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =  1 ) } ) )  =  ( ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) } )  +  ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } ) )
192173, 191eqtri 2461 . . . . . . . . . . . . . . . 16  |-  ( # `  { g  e.  A  |  ( g ` 
1 )  =  ( m  +  1 ) } )  =  ( ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) } )  +  ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } ) )
193 simpll 748 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  N  e.  NN )
194 nnne0 10350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  m  =/=  0 )
195 0p1e1 10429 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  +  1 )  =  1
196195eqeq2i 2451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m  +  1 )  =  ( 0  +  1 )  <->  ( m  +  1 )  =  1 )
197 0cn 9374 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  e.  CC
198 addcan2 9550 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  e.  CC  /\  0  e.  CC  /\  1  e.  CC )  ->  (
( m  +  1 )  =  ( 0  +  1 )  <->  m  = 
0 ) )
199197, 153, 198mp3an23 1301 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  CC  ->  (
( m  +  1 )  =  ( 0  +  1 )  <->  m  = 
0 ) )
200151, 199syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN  ->  (
( m  +  1 )  =  ( 0  +  1 )  <->  m  = 
0 ) )
201196, 200syl5bbr 259 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  NN  ->  (
( m  +  1 )  =  1  <->  m  =  0 ) )
202201necon3bbid 2640 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  ( -.  ( m  +  1 )  =  1  <->  m  =/=  0 ) )
203194, 202mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  -.  ( m  +  1
)  =  1 )
204203ad2antlr 721 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  -.  (
m  +  1 )  =  1 )
20514adantr 462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( N  +  1 )  e.  ( ZZ>= ` 
1 ) )
206 elfzp12 11535 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  <->  ( (
m  +  1 )  =  1  \/  (
m  +  1 )  e.  ( ( 1  +  1 ) ... ( N  +  1 ) ) ) ) )
207205, 206syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) )  <-> 
( ( m  + 
1 )  =  1  \/  ( m  + 
1 )  e.  ( ( 1  +  1 ) ... ( N  +  1 ) ) ) ) )
208207biimpa 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
m  +  1 )  =  1  \/  (
m  +  1 )  e.  ( ( 1  +  1 ) ... ( N  +  1 ) ) ) )
209208ord 377 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( -.  ( m  +  1
)  =  1  -> 
( m  +  1 )  e.  ( ( 1  +  1 ) ... ( N  + 
1 ) ) ) )
210204, 209mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( m  +  1 )  e.  ( ( 1  +  1 ) ... ( N  +  1 ) ) )
211 df-2 10376 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
212211oveq1i 6100 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ... ( N  + 
1 ) )  =  ( ( 1  +  1 ) ... ( N  +  1 ) )
213210, 212syl6eleqr 2532 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( m  +  1 )  e.  ( 2 ... ( N  +  1 ) ) )
214 ovex 6115 . . . . . . . . . . . . . . . . . 18  |-  ( m  +  1 )  e. 
_V
215 eqid 2441 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } )  =  ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } )
216 fveq1 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  h  ->  (
g `  1 )  =  ( h ` 
1 ) )
217216eqeq1d 2449 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  h  ->  (
( g `  1
)  =  ( m  +  1 )  <->  ( h `  1 )  =  ( m  +  1 ) ) )
218 fveq1 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  h  ->  (
g `  ( m  +  1 ) )  =  ( h `  ( m  +  1
) ) )
219218neeq1d 2619 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  h  ->  (
( g `  (
m  +  1 ) )  =/=  1  <->  (
h `  ( m  +  1 ) )  =/=  1 ) )
220217, 219anbi12d 705 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  h  ->  (
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
)  <->  ( ( h `
 1 )  =  ( m  +  1 )  /\  ( h `
 ( m  + 
1 ) )  =/=  1 ) ) )
221220cbvrabv 2969 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =/=  1 ) }  =  { h  e.  A  |  (
( h `  1
)  =  ( m  +  1 )  /\  ( h `  (
m  +  1 ) )  =/=  1 ) }
222 eqid 2441 . . . . . . . . . . . . . . . . . 18  |-  ( (  _I  |`  ( (
2 ... ( N  + 
1 ) )  \  { ( m  + 
1 ) } ) )  u.  { <. 1 ,  ( m  +  1 ) >. ,  <. ( m  + 
1 ) ,  1
>. } )  =  ( (  _I  |`  (
( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) )  u. 
{ <. 1 ,  ( m  +  1 )
>. ,  <. ( m  +  1 ) ,  1 >. } )
223 f1oeq1 5629 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  f  ->  (
g : ( 2 ... ( N  + 
1 ) ) -1-1-onto-> ( 2 ... ( N  + 
1 ) )  <->  f :
( 2 ... ( N  +  1 ) ) -1-1-onto-> ( 2 ... ( N  +  1 ) ) ) )
224 fveq2 5688 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
g `  z )  =  ( g `  y ) )
225 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  z  =  y )
226224, 225neeq12d 2621 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  (
( g `  z
)  =/=  z  <->  ( g `  y )  =/=  y
) )
227226cbvralv 2945 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. z  e.  ( 2 ... ( N  + 
1 ) ) ( g `  z )  =/=  z  <->  A. y  e.  ( 2 ... ( N  +  1 ) ) ( g `  y )  =/=  y
)
228 fveq1 5687 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  f  ->  (
g `  y )  =  ( f `  y ) )
229228neeq1d 2619 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  f  ->  (
( g `  y
)  =/=  y  <->  ( f `  y )  =/=  y
) )
230229ralbidv 2733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  f  ->  ( A. y  e.  (
2 ... ( N  + 
1 ) ) ( g `  y )  =/=  y  <->  A. y  e.  ( 2 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) )
231227, 230syl5bb 257 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  f  ->  ( A. z  e.  (
2 ... ( N  + 
1 ) ) ( g `  z )  =/=  z  <->  A. y  e.  ( 2 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) )
232223, 231anbi12d 705 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  f  ->  (
( g : ( 2 ... ( N  +  1 ) ) -1-1-onto-> ( 2 ... ( N  +  1 ) )  /\  A. z  e.  ( 2 ... ( N  +  1 ) ) ( g `  z )  =/=  z
)  <->  ( f : ( 2 ... ( N  +  1 ) ) -1-1-onto-> ( 2 ... ( N  +  1 ) )  /\  A. y  e.  ( 2 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) ) )
233232cbvabv 2560 . . . . . . . . . . . . . . . . . 18  |-  { g  |  ( g : ( 2 ... ( N  +  1 ) ) -1-1-onto-> ( 2 ... ( N  +  1 ) )  /\  A. z  e.  ( 2 ... ( N  +  1 ) ) ( g `  z )  =/=  z
) }  =  {
f  |  ( f : ( 2 ... ( N  +  1 ) ) -1-1-onto-> ( 2 ... ( N  +  1 ) )  /\  A. y  e.  ( 2 ... ( N  +  1 ) ) ( f `  y )  =/=  y
) }
2343, 4, 10, 193, 213, 214, 215, 221, 222, 233subfacp1lem5 27002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =/=  1
) } )  =  ( S `  N
) )
235218eqeq1d 2449 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  h  ->  (
( g `  (
m  +  1 ) )  =  1  <->  (
h `  ( m  +  1 ) )  =  1 ) )
236217, 235anbi12d 705 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  h  ->  (
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 )  <->  ( ( h `
 1 )  =  ( m  +  1 )  /\  ( h `
 ( m  + 
1 ) )  =  1 ) ) )
237236cbvrabv 2969 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  A  |  ( ( g `  1
)  =  ( m  +  1 )  /\  ( g `  (
m  +  1 ) )  =  1 ) }  =  { h  e.  A  |  (
( h `  1
)  =  ( m  +  1 )  /\  ( h `  (
m  +  1 ) )  =  1 ) }
238 f1oeq1 5629 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  f  ->  (
g : ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } )  <->  f :
( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } ) ) )
239226cbvralv 2945 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. z  e.  ( (
2 ... ( N  + 
1 ) )  \  { ( m  + 
1 ) } ) ( g `  z
)  =/=  z  <->  A. y  e.  ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) ( g `  y )  =/=  y )
240229ralbidv 2733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  f  ->  ( A. y  e.  (
( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) ( g `
 y )  =/=  y  <->  A. y  e.  ( ( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) ( f `
 y )  =/=  y ) )
241239, 240syl5bb 257 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  f  ->  ( A. z  e.  (
( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) ( g `
 z )  =/=  z  <->  A. y  e.  ( ( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) ( f `
 y )  =/=  y ) )
242238, 241anbi12d 705 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  f  ->  (
( g : ( ( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } )  /\  A. z  e.  ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } ) ( g `  z )  =/=  z
)  <->  ( f : ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } )  /\  A. y  e.  ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) ( f `  y )  =/=  y ) ) )
243242cbvabv 2560 . . . . . . . . . . . . . . . . . 18  |-  { g  |  ( g : ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } )  /\  A. z  e.  ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } ) ( g `  z )  =/=  z ) }  =  { f  |  ( f : ( ( 2 ... ( N  +  1 ) )  \  { ( m  +  1 ) } ) -1-1-onto-> ( ( 2 ... ( N  +  1 ) )  \  {
( m  +  1 ) } )  /\  A. y  e.  ( ( 2 ... ( N  +  1 ) ) 
\  { ( m  +  1 ) } ) ( f `  y )  =/=  y
) }
2443, 4, 10, 193, 213, 214, 215, 237, 243subfacp1lem3 27000 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( # `  {
g  e.  A  | 
( ( g ` 
1 )  =  ( m  +  1 )  /\  ( g `  ( m  +  1
) )  =  1 ) } )  =  ( S `  ( N  -  1 ) ) )
245234, 244oveq12d 6108 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ( # `
 { g  e.  A  |  ( ( g `  1 )  =  ( m  + 
1 )  /\  (
g `  ( m  +  1 ) )  =/=  1 ) } )  +  ( # `  { g  e.  A  |  ( ( g `
 1 )  =  ( m  +  1 )  /\  ( g `
 ( m  + 
1 ) )  =  1 ) } ) )  =  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )
246192, 245syl5eq 2485 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } )  =  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )
247162, 246eqtr4d 2476 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( 1  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) )  =  ( # `  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) )
248247oveq2d 6106 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  +  ( 1  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )  =  ( ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  +  (
# `  { g  e.  A  |  (
g `  1 )  =  ( m  + 
1 ) } ) ) )
249156, 161, 2483eqtrd 2477 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( (
( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) )  =  ( ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) )  +  (
# `  { g  e.  A  |  (
g `  1 )  =  ( m  + 
1 ) } ) ) )
250150, 249eqeq12d 2455 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... (
m  +  1 ) ) } )  =  ( ( ( m  +  1 )  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) )  <->  ( ( # `  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) } )  +  (
# `  { g  e.  A  |  (
g `  1 )  =  ( m  + 
1 ) } ) )  =  ( ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  +  ( # `  {
g  e.  A  | 
( g `  1
)  =  ( m  +  1 ) } ) ) ) )
251120, 250syl5ibr 221 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  m  e.  NN )  /\  ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... m
) } )  =  ( ( m  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
252251ex 434 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( m  + 
1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( ( # `  { g  e.  A  |  ( g ` 
1 )  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
253252a2d 26 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  ->  ( ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
254119, 253syld 44 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  NN )  ->  ( ( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  ->  ( ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
255254expcom 435 . . . . . 6  |-  ( m  e.  NN  ->  ( N  e.  NN  ->  ( ( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) )  ->  ( ( m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... ( m  + 
1 ) ) } )  =  ( ( ( m  +  1 )  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) ) )
256255a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( N  e.  NN  ->  ( m  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `  {
g  e.  A  | 
( g `  1
)  e.  ( 1 ... m ) } )  =  ( ( m  -  1 )  x.  ( ( S `
 N )  +  ( S `  ( N  -  1 ) ) ) ) ) )  ->  ( N  e.  NN  ->  ( (
m  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... (
m  +  1 ) ) } )  =  ( ( ( m  +  1 )  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) ) ) ) )
25753, 63, 73, 83, 113, 256nnind 10336 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( N  e.  NN  ->  ( ( N  +  1 )  e.  ( 1 ... ( N  + 
1 ) )  -> 
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) } )  =  ( ( ( N  +  1 )  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) ) ) )
2581, 257mpcom 36 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  e.  ( 1 ... ( N  + 
1 ) )  -> 
( # `  { g  e.  A  |  ( g `  1 )  e.  ( 1 ... ( N  +  1 ) ) } )  =  ( ( ( N  +  1 )  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) ) )
25934, 258mpd 15 . 2  |-  ( N  e.  NN  ->  ( # `
 { g  e.  A  |  ( g `
 1 )  e.  ( 1 ... ( N  +  1 ) ) } )  =  ( ( ( N  +  1 )  - 
1 )  x.  (
( S `  N
)  +  ( S `
 ( N  - 
1 ) ) ) ) )
260 nncn 10326 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
261 pncan 9612 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
262260, 153, 261sylancl 657 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
263262oveq1d 6105 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  x.  ( ( S `  N )  +  ( S `  ( N  -  1
) ) ) )  =  ( N  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
26432, 259, 2633eqtrd 2477 1  |-  ( N  e.  NN  ->  ( S `  ( N  +  1 ) )  =  ( N  x.  ( ( S `  N )  +  ( S `  ( N  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   {crab 2717    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   {csn 3874   {cpr 3876   <.cop 3880    e. cmpt 4347    _I cid 4627    |` cres 4838   -->wf 5411   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   Fincfn 7306   CCcc 9276   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433   #chash 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-hash 12100
This theorem is referenced by:  subfacp1  27004
  Copyright terms: Public domain W3C validator