Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Unicode version

Theorem subfacp1lem2a 27068
Description: Lemma for subfacp1 27074. Properties of a bijection on  K augmented with the two-element flip to get a bijection on  K  u.  {
1 ,  M }. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
subfacp1lem2.5  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
subfacp1lem2.6  |-  ( ph  ->  G : K -1-1-onto-> K )
Assertion
Ref Expression
subfacp1lem2a  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Distinct variable groups:    f, n, x, y, A    f, F, x, y    f, N, n, x, y    ph, x, y    D, n    f, K, n, x, y    f, M, x, y    S, n, x, y
Allowed substitution hints:    ph( f, n)    D( x, y, f)    S( f)    F( n)    G( x, y, f, n)    M( n)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4  |-  ( ph  ->  G : K -1-1-onto-> K )
2 1z 10676 . . . . . 6  |-  1  e.  ZZ
3 subfacp1lem1.x . . . . . 6  |-  M  e. 
_V
4 f1oprswap 5680 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  _V )  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
52, 3, 4mp2an 672 . . . . 5  |-  { <. 1 ,  M >. , 
<. M ,  1 >. } : { 1 ,  M } -1-1-onto-> { 1 ,  M }
65a1i 11 . . . 4  |-  ( ph  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
7 derang.d . . . . . 6  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
8 subfac.n . . . . . 6  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
9 subfacp1lem.a . . . . . 6  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
10 subfacp1lem1.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
11 subfacp1lem1.m . . . . . 6  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
12 subfacp1lem1.k . . . . . 6  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
137, 8, 9, 10, 11, 3, 12subfacp1lem1 27067 . . . . 5  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
1413simp1d 1000 . . . 4  |-  ( ph  ->  ( K  i^i  {
1 ,  M }
)  =  (/) )
15 f1oun 5660 . . . 4  |-  ( ( ( G : K -1-1-onto-> K  /\  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )  /\  (
( K  i^i  {
1 ,  M }
)  =  (/)  /\  ( K  i^i  { 1 ,  M } )  =  (/) ) )  ->  ( G  u.  { <. 1 ,  M >. ,  <. M , 
1 >. } ) : ( K  u.  {
1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } ) )
161, 6, 14, 14, 15syl22anc 1219 . . 3  |-  ( ph  ->  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
1713simp2d 1001 . . . 4  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
18 subfacp1lem2.5 . . . . . . 7  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
19 f1oeq1 5632 . . . . . . 7  |-  ( F  =  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2018, 19ax-mp 5 . . . . . 6  |-  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
21 f1oeq2 5633 . . . . . 6  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2220, 21syl5bbr 259 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
23 f1oeq3 5634 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( K  u.  {
1 ,  M }
)  <->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2422, 23bitrd 253 . . . 4  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2517, 24syl 16 . . 3  |-  ( ph  ->  ( ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2616, 25mpbid 210 . 2  |-  ( ph  ->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) )
27 f1ofun 5643 . . . . 5  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  Fun  F )
2826, 27syl 16 . . . 4  |-  ( ph  ->  Fun  F )
29 snsspr1 4022 . . . . . 6  |-  { <. 1 ,  M >. } 
C_  { <. 1 ,  M >. ,  <. M , 
1 >. }
30 ssun2 3520 . . . . . . 7  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )
3130, 18sseqtr4i 3389 . . . . . 6  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  F
3229, 31sstri 3365 . . . . 5  |-  { <. 1 ,  M >. } 
C_  F
33 1ex 9381 . . . . . . 7  |-  1  e.  _V
3433snid 3905 . . . . . 6  |-  1  e.  { 1 }
353dmsnop 5313 . . . . . 6  |-  dom  { <. 1 ,  M >. }  =  { 1 }
3634, 35eleqtrri 2516 . . . . 5  |-  1  e.  dom  { <. 1 ,  M >. }
37 funssfv 5705 . . . . 5  |-  ( ( Fun  F  /\  { <. 1 ,  M >. } 
C_  F  /\  1  e.  dom  { <. 1 ,  M >. } )  -> 
( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
3832, 36, 37mp3an23 1306 . . . 4  |-  ( Fun 
F  ->  ( F `  1 )  =  ( { <. 1 ,  M >. } `  1
) )
3928, 38syl 16 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
4033, 3fvsn 5911 . . 3  |-  ( {
<. 1 ,  M >. } `  1 )  =  M
4139, 40syl6eq 2491 . 2  |-  ( ph  ->  ( F `  1
)  =  M )
42 snsspr2 4023 . . . . . 6  |-  { <. M ,  1 >. }  C_  {
<. 1 ,  M >. ,  <. M ,  1
>. }
4342, 31sstri 3365 . . . . 5  |-  { <. M ,  1 >. }  C_  F
443snid 3905 . . . . . 6  |-  M  e. 
{ M }
4533dmsnop 5313 . . . . . 6  |-  dom  { <. M ,  1 >. }  =  { M }
4644, 45eleqtrri 2516 . . . . 5  |-  M  e. 
dom  { <. M ,  1
>. }
47 funssfv 5705 . . . . 5  |-  ( ( Fun  F  /\  { <. M ,  1 >. }  C_  F  /\  M  e.  dom  { <. M , 
1 >. } )  -> 
( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
4843, 46, 47mp3an23 1306 . . . 4  |-  ( Fun 
F  ->  ( F `  M )  =  ( { <. M ,  1
>. } `  M ) )
4928, 48syl 16 . . 3  |-  ( ph  ->  ( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
503, 33fvsn 5911 . . 3  |-  ( {
<. M ,  1 >. } `  M )  =  1
5149, 50syl6eq 2491 . 2  |-  ( ph  ->  ( F `  M
)  =  1 )
5226, 41, 513jca 1168 1  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2606   A.wral 2715   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   (/)c0 3637   {csn 3877   {cpr 3879   <.cop 3883    e. cmpt 4350   dom cdm 4840   Fun wfun 5412   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091   Fincfn 7310   1c1 9283    + caddc 9285    - cmin 9595   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ...cfz 11437   #chash 12103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-hash 12104
This theorem is referenced by:  subfacp1lem2b  27069  subfacp1lem3  27070  subfacp1lem4  27071  subfacp1lem5  27072
  Copyright terms: Public domain W3C validator