Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Unicode version

Theorem subfacp1lem2a 28280
Description: Lemma for subfacp1 28286. Properties of a bijection on  K augmented with the two-element flip to get a bijection on  K  u.  {
1 ,  M }. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
subfacp1lem2.5  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
subfacp1lem2.6  |-  ( ph  ->  G : K -1-1-onto-> K )
Assertion
Ref Expression
subfacp1lem2a  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Distinct variable groups:    f, n, x, y, A    f, F, x, y    f, N, n, x, y    ph, x, y    D, n    f, K, n, x, y    f, M, x, y    S, n, x, y
Allowed substitution hints:    ph( f, n)    D( x, y, f)    S( f)    F( n)    G( x, y, f, n)    M( n)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4  |-  ( ph  ->  G : K -1-1-onto-> K )
2 1z 10893 . . . . . 6  |-  1  e.  ZZ
3 subfacp1lem1.x . . . . . 6  |-  M  e. 
_V
4 f1oprswap 5854 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  _V )  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
52, 3, 4mp2an 672 . . . . 5  |-  { <. 1 ,  M >. , 
<. M ,  1 >. } : { 1 ,  M } -1-1-onto-> { 1 ,  M }
65a1i 11 . . . 4  |-  ( ph  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
7 derang.d . . . . . 6  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
8 subfac.n . . . . . 6  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
9 subfacp1lem.a . . . . . 6  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
10 subfacp1lem1.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
11 subfacp1lem1.m . . . . . 6  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
12 subfacp1lem1.k . . . . . 6  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
137, 8, 9, 10, 11, 3, 12subfacp1lem1 28279 . . . . 5  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
1413simp1d 1008 . . . 4  |-  ( ph  ->  ( K  i^i  {
1 ,  M }
)  =  (/) )
15 f1oun 5834 . . . 4  |-  ( ( ( G : K -1-1-onto-> K  /\  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )  /\  (
( K  i^i  {
1 ,  M }
)  =  (/)  /\  ( K  i^i  { 1 ,  M } )  =  (/) ) )  ->  ( G  u.  { <. 1 ,  M >. ,  <. M , 
1 >. } ) : ( K  u.  {
1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } ) )
161, 6, 14, 14, 15syl22anc 1229 . . 3  |-  ( ph  ->  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
1713simp2d 1009 . . . 4  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
18 subfacp1lem2.5 . . . . . . 7  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
19 f1oeq1 5806 . . . . . . 7  |-  ( F  =  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2018, 19ax-mp 5 . . . . . 6  |-  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
21 f1oeq2 5807 . . . . . 6  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2220, 21syl5bbr 259 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
23 f1oeq3 5808 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( K  u.  {
1 ,  M }
)  <->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2422, 23bitrd 253 . . . 4  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2517, 24syl 16 . . 3  |-  ( ph  ->  ( ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2616, 25mpbid 210 . 2  |-  ( ph  ->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) )
27 f1ofun 5817 . . . . 5  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  Fun  F )
2826, 27syl 16 . . . 4  |-  ( ph  ->  Fun  F )
29 snsspr1 4176 . . . . . 6  |-  { <. 1 ,  M >. } 
C_  { <. 1 ,  M >. ,  <. M , 
1 >. }
30 ssun2 3668 . . . . . . 7  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )
3130, 18sseqtr4i 3537 . . . . . 6  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  F
3229, 31sstri 3513 . . . . 5  |-  { <. 1 ,  M >. } 
C_  F
33 1ex 9590 . . . . . . 7  |-  1  e.  _V
3433snid 4055 . . . . . 6  |-  1  e.  { 1 }
353dmsnop 5481 . . . . . 6  |-  dom  { <. 1 ,  M >. }  =  { 1 }
3634, 35eleqtrri 2554 . . . . 5  |-  1  e.  dom  { <. 1 ,  M >. }
37 funssfv 5880 . . . . 5  |-  ( ( Fun  F  /\  { <. 1 ,  M >. } 
C_  F  /\  1  e.  dom  { <. 1 ,  M >. } )  -> 
( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
3832, 36, 37mp3an23 1316 . . . 4  |-  ( Fun 
F  ->  ( F `  1 )  =  ( { <. 1 ,  M >. } `  1
) )
3928, 38syl 16 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
4033, 3fvsn 6093 . . 3  |-  ( {
<. 1 ,  M >. } `  1 )  =  M
4139, 40syl6eq 2524 . 2  |-  ( ph  ->  ( F `  1
)  =  M )
42 snsspr2 4177 . . . . . 6  |-  { <. M ,  1 >. }  C_  {
<. 1 ,  M >. ,  <. M ,  1
>. }
4342, 31sstri 3513 . . . . 5  |-  { <. M ,  1 >. }  C_  F
443snid 4055 . . . . . 6  |-  M  e. 
{ M }
4533dmsnop 5481 . . . . . 6  |-  dom  { <. M ,  1 >. }  =  { M }
4644, 45eleqtrri 2554 . . . . 5  |-  M  e. 
dom  { <. M ,  1
>. }
47 funssfv 5880 . . . . 5  |-  ( ( Fun  F  /\  { <. M ,  1 >. }  C_  F  /\  M  e.  dom  { <. M , 
1 >. } )  -> 
( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
4843, 46, 47mp3an23 1316 . . . 4  |-  ( Fun 
F  ->  ( F `  M )  =  ( { <. M ,  1
>. } `  M ) )
4928, 48syl 16 . . 3  |-  ( ph  ->  ( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
503, 33fvsn 6093 . . 3  |-  ( {
<. M ,  1 >. } `  M )  =  1
5149, 50syl6eq 2524 . 2  |-  ( ph  ->  ( F `  M
)  =  1 )
5226, 41, 513jca 1176 1  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   {cpr 4029   <.cop 4033    |-> cmpt 4505   dom cdm 4999   Fun wfun 5581   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   Fincfn 7516   1c1 9492    + caddc 9494    - cmin 9804   NNcn 10535   2c2 10584   NN0cn0 10794   ZZcz 10863   ...cfz 11671   #chash 12372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-2 10593  df-n0 10795  df-z 10864  df-uz 11082  df-fz 11672  df-hash 12373
This theorem is referenced by:  subfacp1lem2b  28281  subfacp1lem3  28282  subfacp1lem4  28283  subfacp1lem5  28284
  Copyright terms: Public domain W3C validator