Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem1 Structured version   Unicode version

Theorem subfacp1lem1 28601
Description: Lemma for subfacp1 28608. The set  K together with  { 1 ,  M } partitions the set  1 ... ( N  +  1 ). (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
Assertion
Ref Expression
subfacp1lem1  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
Distinct variable groups:    f, n, x, y, A    f, N, n, x, y    ph, x, y    D, n    f, K, n, x, y    f, M, x, y    S, n, x, y
Allowed substitution hints:    ph( f, n)    D( x, y, f)    S( f)    M( n)

Proof of Theorem subfacp1lem1
StepHypRef Expression
1 disj 3853 . . . 4  |-  ( ( K  i^i  { 1 ,  M } )  =  (/)  <->  A. x  e.  K  -.  x  e.  { 1 ,  M } )
2 eldifi 3611 . . . . . . . . 9  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  e.  ( 2 ... ( N  + 
1 ) ) )
3 elfzle1 11700 . . . . . . . . 9  |-  ( x  e.  ( 2 ... ( N  +  1 ) )  ->  2  <_  x )
4 1lt2 10709 . . . . . . . . . . . 12  |-  1  <  2
5 1re 9598 . . . . . . . . . . . . 13  |-  1  e.  RR
6 2re 10612 . . . . . . . . . . . . 13  |-  2  e.  RR
75, 6ltnlei 9708 . . . . . . . . . . . 12  |-  ( 1  <  2  <->  -.  2  <_  1 )
84, 7mpbi 208 . . . . . . . . . . 11  |-  -.  2  <_  1
9 breq2 4441 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
2  <_  x  <->  2  <_  1 ) )
108, 9mtbiri 303 . . . . . . . . . 10  |-  ( x  =  1  ->  -.  2  <_  x )
1110necon2ai 2678 . . . . . . . . 9  |-  ( 2  <_  x  ->  x  =/=  1 )
122, 3, 113syl 20 . . . . . . . 8  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  =/=  1 )
13 eldifsni 4141 . . . . . . . 8  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  =/=  M )
1412, 13jca 532 . . . . . . 7  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  -> 
( x  =/=  1  /\  x  =/=  M
) )
15 subfacp1lem1.k . . . . . . 7  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
1614, 15eleq2s 2551 . . . . . 6  |-  ( x  e.  K  ->  (
x  =/=  1  /\  x  =/=  M ) )
17 neanior 2768 . . . . . 6  |-  ( ( x  =/=  1  /\  x  =/=  M )  <->  -.  ( x  =  1  \/  x  =  M ) )
1816, 17sylib 196 . . . . 5  |-  ( x  e.  K  ->  -.  ( x  =  1  \/  x  =  M
) )
19 vex 3098 . . . . . 6  |-  x  e. 
_V
2019elpr 4032 . . . . 5  |-  ( x  e.  { 1 ,  M }  <->  ( x  =  1  \/  x  =  M ) )
2118, 20sylnibr 305 . . . 4  |-  ( x  e.  K  ->  -.  x  e.  { 1 ,  M } )
221, 21mprgbir 2807 . . 3  |-  ( K  i^i  { 1 ,  M } )  =  (/)
2322a1i 11 . 2  |-  ( ph  ->  ( K  i^i  {
1 ,  M }
)  =  (/) )
24 uncom 3633 . . . 4  |-  ( { 1 }  u.  ( K  u.  { M } ) )  =  ( ( K  u.  { M } )  u. 
{ 1 } )
25 1z 10901 . . . . . 6  |-  1  e.  ZZ
26 fzsn 11736 . . . . . 6  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
2725, 26ax-mp 5 . . . . 5  |-  ( 1 ... 1 )  =  { 1 }
2815uneq1i 3639 . . . . . 6  |-  ( K  u.  { M }
)  =  ( ( ( 2 ... ( N  +  1 ) )  \  { M } )  u.  { M } )
29 undif1 3889 . . . . . 6  |-  ( ( ( 2 ... ( N  +  1 ) )  \  { M } )  u.  { M } )  =  ( ( 2 ... ( N  +  1 ) )  u.  { M } )
3028, 29eqtr2i 2473 . . . . 5  |-  ( ( 2 ... ( N  +  1 ) )  u.  { M }
)  =  ( K  u.  { M }
)
3127, 30uneq12i 3641 . . . 4  |-  ( ( 1 ... 1 )  u.  ( ( 2 ... ( N  + 
1 ) )  u. 
{ M } ) )  =  ( { 1 }  u.  ( K  u.  { M } ) )
32 df-pr 4017 . . . . . . 7  |-  { 1 ,  M }  =  ( { 1 }  u.  { M } )
3332equncomi 3635 . . . . . 6  |-  { 1 ,  M }  =  ( { M }  u.  { 1 } )
3433uneq2i 3640 . . . . 5  |-  ( K  u.  { 1 ,  M } )  =  ( K  u.  ( { M }  u.  {
1 } ) )
35 unass 3646 . . . . 5  |-  ( ( K  u.  { M } )  u.  {
1 } )  =  ( K  u.  ( { M }  u.  {
1 } ) )
3634, 35eqtr4i 2475 . . . 4  |-  ( K  u.  { 1 ,  M } )  =  ( ( K  u.  { M } )  u. 
{ 1 } )
3724, 31, 363eqtr4i 2482 . . 3  |-  ( ( 1 ... 1 )  u.  ( ( 2 ... ( N  + 
1 ) )  u. 
{ M } ) )  =  ( K  u.  { 1 ,  M } )
38 subfacp1lem1.m . . . . . . . 8  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
3938snssd 4160 . . . . . . 7  |-  ( ph  ->  { M }  C_  ( 2 ... ( N  +  1 ) ) )
40 ssequn2 3662 . . . . . . 7  |-  ( { M }  C_  (
2 ... ( N  + 
1 ) )  <->  ( (
2 ... ( N  + 
1 ) )  u. 
{ M } )  =  ( 2 ... ( N  +  1 ) ) )
4139, 40sylib 196 . . . . . 6  |-  ( ph  ->  ( ( 2 ... ( N  +  1 ) )  u.  { M } )  =  ( 2 ... ( N  +  1 ) ) )
42 df-2 10601 . . . . . . 7  |-  2  =  ( 1  +  1 )
4342oveq1i 6291 . . . . . 6  |-  ( 2 ... ( N  + 
1 ) )  =  ( ( 1  +  1 ) ... ( N  +  1 ) )
4441, 43syl6eq 2500 . . . . 5  |-  ( ph  ->  ( ( 2 ... ( N  +  1 ) )  u.  { M } )  =  ( ( 1  +  1 ) ... ( N  +  1 ) ) )
4544uneq2d 3643 . . . 4  |-  ( ph  ->  ( ( 1 ... 1 )  u.  (
( 2 ... ( N  +  1 ) )  u.  { M } ) )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... ( N  +  1 ) ) ) )
46 subfacp1lem1.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
4746peano2nnd 10560 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN )
48 nnuz 11127 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
4947, 48syl6eleq 2541 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
1 ) )
50 eluzfz1 11704 . . . . 5  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( N  +  1 ) ) )
51 fzsplit 11722 . . . . 5  |-  ( 1  e.  ( 1 ... ( N  +  1 ) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... ( N  +  1 ) ) ) )
5249, 50, 513syl 20 . . . 4  |-  ( ph  ->  ( 1 ... ( N  +  1 ) )  =  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... ( N  +  1 ) ) ) )
5345, 52eqtr4d 2487 . . 3  |-  ( ph  ->  ( ( 1 ... 1 )  u.  (
( 2 ... ( N  +  1 ) )  u.  { M } ) )  =  ( 1 ... ( N  +  1 ) ) )
5437, 53syl5eqr 2498 . 2  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
5542oveq2i 6292 . . 3  |-  ( ( N  +  1 )  -  2 )  =  ( ( N  + 
1 )  -  (
1  +  1 ) )
56 fzfi 12064 . . . . . . . . 9  |-  ( 2 ... ( N  + 
1 ) )  e. 
Fin
57 diffi 7753 . . . . . . . . 9  |-  ( ( 2 ... ( N  +  1 ) )  e.  Fin  ->  (
( 2 ... ( N  +  1 ) )  \  { M } )  e.  Fin )
5856, 57ax-mp 5 . . . . . . . 8  |-  ( ( 2 ... ( N  +  1 ) ) 
\  { M }
)  e.  Fin
5915, 58eqeltri 2527 . . . . . . 7  |-  K  e. 
Fin
60 prfi 7797 . . . . . . 7  |-  { 1 ,  M }  e.  Fin
61 hashun 12432 . . . . . . 7  |-  ( ( K  e.  Fin  /\  { 1 ,  M }  e.  Fin  /\  ( K  i^i  { 1 ,  M } )  =  (/) )  ->  ( # `  ( K  u.  {
1 ,  M }
) )  =  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) ) )
6259, 60, 22, 61mp3an 1325 . . . . . 6  |-  ( # `  ( K  u.  {
1 ,  M }
) )  =  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) )
6354fveq2d 5860 . . . . . 6  |-  ( ph  ->  ( # `  ( K  u.  { 1 ,  M } ) )  =  ( # `  (
1 ... ( N  + 
1 ) ) ) )
64 neeq1 2724 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  =/=  1  <->  M  =/=  1 ) )
653, 11syl 16 . . . . . . . . . . 11  |-  ( x  e.  ( 2 ... ( N  +  1 ) )  ->  x  =/=  1 )
6664, 65vtoclga 3159 . . . . . . . . . 10  |-  ( M  e.  ( 2 ... ( N  +  1 ) )  ->  M  =/=  1 )
6738, 66syl 16 . . . . . . . . 9  |-  ( ph  ->  M  =/=  1 )
6867necomd 2714 . . . . . . . 8  |-  ( ph  ->  1  =/=  M )
69 1ex 9594 . . . . . . . . 9  |-  1  e.  _V
70 subfacp1lem1.x . . . . . . . . 9  |-  M  e. 
_V
71 hashprg 12442 . . . . . . . . 9  |-  ( ( 1  e.  _V  /\  M  e.  _V )  ->  ( 1  =/=  M  <->  (
# `  { 1 ,  M } )  =  2 ) )
7269, 70, 71mp2an 672 . . . . . . . 8  |-  ( 1  =/=  M  <->  ( # `  {
1 ,  M }
)  =  2 )
7368, 72sylib 196 . . . . . . 7  |-  ( ph  ->  ( # `  {
1 ,  M }
)  =  2 )
7473oveq2d 6297 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) )  =  ( ( # `  K
)  +  2 ) )
7562, 63, 743eqtr3a 2508 . . . . 5  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( ( # `  K )  +  2 ) )
7647nnnn0d 10859 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
77 hashfz1 12401 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
7876, 77syl 16 . . . . 5  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( N  + 
1 ) )
7975, 78eqtr3d 2486 . . . 4  |-  ( ph  ->  ( ( # `  K
)  +  2 )  =  ( N  + 
1 ) )
8047nncnd 10559 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  CC )
81 2cnd 10615 . . . . 5  |-  ( ph  ->  2  e.  CC )
82 hashcl 12410 . . . . . . . 8  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
8359, 82ax-mp 5 . . . . . . 7  |-  ( # `  K )  e.  NN0
8483nn0cni 10814 . . . . . 6  |-  ( # `  K )  e.  CC
8584a1i 11 . . . . 5  |-  ( ph  ->  ( # `  K
)  e.  CC )
8680, 81, 85subadd2d 9955 . . . 4  |-  ( ph  ->  ( ( ( N  +  1 )  - 
2 )  =  (
# `  K )  <->  ( ( # `  K
)  +  2 )  =  ( N  + 
1 ) ) )
8779, 86mpbird 232 . . 3  |-  ( ph  ->  ( ( N  + 
1 )  -  2 )  =  ( # `  K ) )
8846nncnd 10559 . . . 4  |-  ( ph  ->  N  e.  CC )
89 1cnd 9615 . . . 4  |-  ( ph  ->  1  e.  CC )
9088, 89, 89pnpcan2d 9974 . . 3  |-  ( ph  ->  ( ( N  + 
1 )  -  (
1  +  1 ) )  =  ( N  -  1 ) )
9155, 87, 903eqtr3a 2508 . 2  |-  ( ph  ->  ( # `  K
)  =  ( N  -  1 ) )
9223, 54, 913jca 1177 1  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {cab 2428    =/= wne 2638   A.wral 2793   _Vcvv 3095    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   {csn 4014   {cpr 4016   class class class wbr 4437    |-> cmpt 4495   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   Fincfn 7518   CCcc 9493   1c1 9496    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   NNcn 10543   2c2 10592   NN0cn0 10802   ZZcz 10871   ZZ>=cuz 11092   ...cfz 11683   #chash 12387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-hash 12388
This theorem is referenced by:  subfacp1lem2a  28602  subfacp1lem3  28604  subfacp1lem4  28605
  Copyright terms: Public domain W3C validator