Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem1 Structured version   Visualization version   Unicode version

Theorem subfacp1lem1 29974
Description: Lemma for subfacp1 29981. The set  K together with  { 1 ,  M } partitions the set  1 ... ( N  +  1 ). (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
Assertion
Ref Expression
subfacp1lem1  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
Distinct variable groups:    f, n, x, y, A    f, N, n, x, y    ph, x, y    D, n    f, K, n, x, y    f, M, x, y    S, n, x, y
Allowed substitution hints:    ph( f, n)    D( x, y, f)    S( f)    M( n)

Proof of Theorem subfacp1lem1
StepHypRef Expression
1 disj 3809 . . . 4  |-  ( ( K  i^i  { 1 ,  M } )  =  (/)  <->  A. x  e.  K  -.  x  e.  { 1 ,  M } )
2 eldifi 3544 . . . . . . . . 9  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  e.  ( 2 ... ( N  + 
1 ) ) )
3 elfzle1 11828 . . . . . . . . 9  |-  ( x  e.  ( 2 ... ( N  +  1 ) )  ->  2  <_  x )
4 1lt2 10799 . . . . . . . . . . . 12  |-  1  <  2
5 1re 9660 . . . . . . . . . . . . 13  |-  1  e.  RR
6 2re 10701 . . . . . . . . . . . . 13  |-  2  e.  RR
75, 6ltnlei 9773 . . . . . . . . . . . 12  |-  ( 1  <  2  <->  -.  2  <_  1 )
84, 7mpbi 213 . . . . . . . . . . 11  |-  -.  2  <_  1
9 breq2 4399 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
2  <_  x  <->  2  <_  1 ) )
108, 9mtbiri 310 . . . . . . . . . 10  |-  ( x  =  1  ->  -.  2  <_  x )
1110necon2ai 2672 . . . . . . . . 9  |-  ( 2  <_  x  ->  x  =/=  1 )
122, 3, 113syl 18 . . . . . . . 8  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  =/=  1 )
13 eldifsni 4089 . . . . . . . 8  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  ->  x  =/=  M )
1412, 13jca 541 . . . . . . 7  |-  ( x  e.  ( ( 2 ... ( N  + 
1 ) )  \  { M } )  -> 
( x  =/=  1  /\  x  =/=  M
) )
15 subfacp1lem1.k . . . . . . 7  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
1614, 15eleq2s 2567 . . . . . 6  |-  ( x  e.  K  ->  (
x  =/=  1  /\  x  =/=  M ) )
17 neanior 2735 . . . . . 6  |-  ( ( x  =/=  1  /\  x  =/=  M )  <->  -.  ( x  =  1  \/  x  =  M ) )
1816, 17sylib 201 . . . . 5  |-  ( x  e.  K  ->  -.  ( x  =  1  \/  x  =  M
) )
19 vex 3034 . . . . . 6  |-  x  e. 
_V
2019elpr 3977 . . . . 5  |-  ( x  e.  { 1 ,  M }  <->  ( x  =  1  \/  x  =  M ) )
2118, 20sylnibr 312 . . . 4  |-  ( x  e.  K  ->  -.  x  e.  { 1 ,  M } )
221, 21mprgbir 2771 . . 3  |-  ( K  i^i  { 1 ,  M } )  =  (/)
2322a1i 11 . 2  |-  ( ph  ->  ( K  i^i  {
1 ,  M }
)  =  (/) )
24 uncom 3569 . . . 4  |-  ( { 1 }  u.  ( K  u.  { M } ) )  =  ( ( K  u.  { M } )  u. 
{ 1 } )
25 1z 10991 . . . . . 6  |-  1  e.  ZZ
26 fzsn 11866 . . . . . 6  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
2725, 26ax-mp 5 . . . . 5  |-  ( 1 ... 1 )  =  { 1 }
2815uneq1i 3575 . . . . . 6  |-  ( K  u.  { M }
)  =  ( ( ( 2 ... ( N  +  1 ) )  \  { M } )  u.  { M } )
29 undif1 3833 . . . . . 6  |-  ( ( ( 2 ... ( N  +  1 ) )  \  { M } )  u.  { M } )  =  ( ( 2 ... ( N  +  1 ) )  u.  { M } )
3028, 29eqtr2i 2494 . . . . 5  |-  ( ( 2 ... ( N  +  1 ) )  u.  { M }
)  =  ( K  u.  { M }
)
3127, 30uneq12i 3577 . . . 4  |-  ( ( 1 ... 1 )  u.  ( ( 2 ... ( N  + 
1 ) )  u. 
{ M } ) )  =  ( { 1 }  u.  ( K  u.  { M } ) )
32 df-pr 3962 . . . . . . 7  |-  { 1 ,  M }  =  ( { 1 }  u.  { M } )
3332equncomi 3571 . . . . . 6  |-  { 1 ,  M }  =  ( { M }  u.  { 1 } )
3433uneq2i 3576 . . . . 5  |-  ( K  u.  { 1 ,  M } )  =  ( K  u.  ( { M }  u.  {
1 } ) )
35 unass 3582 . . . . 5  |-  ( ( K  u.  { M } )  u.  {
1 } )  =  ( K  u.  ( { M }  u.  {
1 } ) )
3634, 35eqtr4i 2496 . . . 4  |-  ( K  u.  { 1 ,  M } )  =  ( ( K  u.  { M } )  u. 
{ 1 } )
3724, 31, 363eqtr4i 2503 . . 3  |-  ( ( 1 ... 1 )  u.  ( ( 2 ... ( N  + 
1 ) )  u. 
{ M } ) )  =  ( K  u.  { 1 ,  M } )
38 subfacp1lem1.m . . . . . . . 8  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
3938snssd 4108 . . . . . . 7  |-  ( ph  ->  { M }  C_  ( 2 ... ( N  +  1 ) ) )
40 ssequn2 3598 . . . . . . 7  |-  ( { M }  C_  (
2 ... ( N  + 
1 ) )  <->  ( (
2 ... ( N  + 
1 ) )  u. 
{ M } )  =  ( 2 ... ( N  +  1 ) ) )
4139, 40sylib 201 . . . . . 6  |-  ( ph  ->  ( ( 2 ... ( N  +  1 ) )  u.  { M } )  =  ( 2 ... ( N  +  1 ) ) )
42 df-2 10690 . . . . . . 7  |-  2  =  ( 1  +  1 )
4342oveq1i 6318 . . . . . 6  |-  ( 2 ... ( N  + 
1 ) )  =  ( ( 1  +  1 ) ... ( N  +  1 ) )
4441, 43syl6eq 2521 . . . . 5  |-  ( ph  ->  ( ( 2 ... ( N  +  1 ) )  u.  { M } )  =  ( ( 1  +  1 ) ... ( N  +  1 ) ) )
4544uneq2d 3579 . . . 4  |-  ( ph  ->  ( ( 1 ... 1 )  u.  (
( 2 ... ( N  +  1 ) )  u.  { M } ) )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... ( N  +  1 ) ) ) )
46 subfacp1lem1.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
4746peano2nnd 10648 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN )
48 nnuz 11218 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
4947, 48syl6eleq 2559 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
1 ) )
50 eluzfz1 11832 . . . . 5  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( N  +  1 ) ) )
51 fzsplit 11851 . . . . 5  |-  ( 1  e.  ( 1 ... ( N  +  1 ) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... ( N  +  1 ) ) ) )
5249, 50, 513syl 18 . . . 4  |-  ( ph  ->  ( 1 ... ( N  +  1 ) )  =  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... ( N  +  1 ) ) ) )
5345, 52eqtr4d 2508 . . 3  |-  ( ph  ->  ( ( 1 ... 1 )  u.  (
( 2 ... ( N  +  1 ) )  u.  { M } ) )  =  ( 1 ... ( N  +  1 ) ) )
5437, 53syl5eqr 2519 . 2  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
5542oveq2i 6319 . . 3  |-  ( ( N  +  1 )  -  2 )  =  ( ( N  + 
1 )  -  (
1  +  1 ) )
56 fzfi 12223 . . . . . . . . 9  |-  ( 2 ... ( N  + 
1 ) )  e. 
Fin
57 diffi 7821 . . . . . . . . 9  |-  ( ( 2 ... ( N  +  1 ) )  e.  Fin  ->  (
( 2 ... ( N  +  1 ) )  \  { M } )  e.  Fin )
5856, 57ax-mp 5 . . . . . . . 8  |-  ( ( 2 ... ( N  +  1 ) ) 
\  { M }
)  e.  Fin
5915, 58eqeltri 2545 . . . . . . 7  |-  K  e. 
Fin
60 prfi 7864 . . . . . . 7  |-  { 1 ,  M }  e.  Fin
61 hashun 12599 . . . . . . 7  |-  ( ( K  e.  Fin  /\  { 1 ,  M }  e.  Fin  /\  ( K  i^i  { 1 ,  M } )  =  (/) )  ->  ( # `  ( K  u.  {
1 ,  M }
) )  =  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) ) )
6259, 60, 22, 61mp3an 1390 . . . . . 6  |-  ( # `  ( K  u.  {
1 ,  M }
) )  =  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) )
6354fveq2d 5883 . . . . . 6  |-  ( ph  ->  ( # `  ( K  u.  { 1 ,  M } ) )  =  ( # `  (
1 ... ( N  + 
1 ) ) ) )
64 neeq1 2705 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  =/=  1  <->  M  =/=  1 ) )
653, 11syl 17 . . . . . . . . . . 11  |-  ( x  e.  ( 2 ... ( N  +  1 ) )  ->  x  =/=  1 )
6664, 65vtoclga 3099 . . . . . . . . . 10  |-  ( M  e.  ( 2 ... ( N  +  1 ) )  ->  M  =/=  1 )
6738, 66syl 17 . . . . . . . . 9  |-  ( ph  ->  M  =/=  1 )
6867necomd 2698 . . . . . . . 8  |-  ( ph  ->  1  =/=  M )
69 1ex 9656 . . . . . . . . 9  |-  1  e.  _V
70 subfacp1lem1.x . . . . . . . . 9  |-  M  e. 
_V
71 hashprg 12610 . . . . . . . . 9  |-  ( ( 1  e.  _V  /\  M  e.  _V )  ->  ( 1  =/=  M  <->  (
# `  { 1 ,  M } )  =  2 ) )
7269, 70, 71mp2an 686 . . . . . . . 8  |-  ( 1  =/=  M  <->  ( # `  {
1 ,  M }
)  =  2 )
7368, 72sylib 201 . . . . . . 7  |-  ( ph  ->  ( # `  {
1 ,  M }
)  =  2 )
7473oveq2d 6324 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  +  ( # `  { 1 ,  M } ) )  =  ( ( # `  K
)  +  2 ) )
7562, 63, 743eqtr3a 2529 . . . . 5  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( ( # `  K )  +  2 ) )
7647nnnn0d 10949 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
77 hashfz1 12567 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
7876, 77syl 17 . . . . 5  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( N  + 
1 ) )
7975, 78eqtr3d 2507 . . . 4  |-  ( ph  ->  ( ( # `  K
)  +  2 )  =  ( N  + 
1 ) )
8047nncnd 10647 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  CC )
81 2cnd 10704 . . . . 5  |-  ( ph  ->  2  e.  CC )
82 hashcl 12576 . . . . . . . 8  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
8359, 82ax-mp 5 . . . . . . 7  |-  ( # `  K )  e.  NN0
8483nn0cni 10905 . . . . . 6  |-  ( # `  K )  e.  CC
8584a1i 11 . . . . 5  |-  ( ph  ->  ( # `  K
)  e.  CC )
8680, 81, 85subadd2d 10024 . . . 4  |-  ( ph  ->  ( ( ( N  +  1 )  - 
2 )  =  (
# `  K )  <->  ( ( # `  K
)  +  2 )  =  ( N  + 
1 ) ) )
8779, 86mpbird 240 . . 3  |-  ( ph  ->  ( ( N  + 
1 )  -  2 )  =  ( # `  K ) )
8846nncnd 10647 . . . 4  |-  ( ph  ->  N  e.  CC )
89 1cnd 9677 . . . 4  |-  ( ph  ->  1  e.  CC )
9088, 89, 89pnpcan2d 10043 . . 3  |-  ( ph  ->  ( ( N  + 
1 )  -  (
1  +  1 ) )  =  ( N  -  1 ) )
9155, 87, 903eqtr3a 2529 . 2  |-  ( ph  ->  ( # `  K
)  =  ( N  -  1 ) )
9223, 54, 913jca 1210 1  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   {cpr 3961   class class class wbr 4395    |-> cmpt 4454   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   1c1 9558    + caddc 9560    < clt 9693    <_ cle 9694    - cmin 9880   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   #chash 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-hash 12554
This theorem is referenced by:  subfacp1lem2a  29975  subfacp1lem3  29977  subfacp1lem4  29978
  Copyright terms: Public domain W3C validator