Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Unicode version

Theorem subfaclim 27028
Description: The subfactorial converges rapidly to  N !  /  _e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfaclim  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Distinct variable groups:    f, n, x, y, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfaclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 10578 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 12053 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
31, 2syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43nncnd 10330 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
5 ere 13366 . . . . . . 7  |-  _e  e.  RR
65recni 9390 . . . . . 6  |-  _e  e.  CC
7 epos 13481 . . . . . . 7  |-  0  <  _e
85, 7gt0ne0ii 9868 . . . . . 6  |-  _e  =/=  0
9 divcl 9992 . . . . . 6  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  e.  CC )
106, 8, 9mp3an23 1306 . . . . 5  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  e.  CC )
114, 10syl 16 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  e.  CC )
12 derang.d . . . . . . . 8  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
13 subfac.n . . . . . . . 8  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
1412, 13subfacf 27015 . . . . . . 7  |-  S : NN0
--> NN0
1514ffvelrni 5837 . . . . . 6  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
161, 15syl 16 . . . . 5  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
1716nn0cnd 10630 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  e.  CC )
1811, 17subcld 9711 . . 3  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  CC )
1918abscld 12914 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  e.  RR )
20 peano2nn 10326 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2120peano2nnd 10331 . . . 4  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
2221nnred 10329 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR )
2320, 20nnmulcld 10361 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  NN )
2422, 23nndivred 10362 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  e.  RR )
25 nnrecre 10350 . 2  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
26 eqid 2438 . . . . . 6  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )
27 eqid 2438 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )
28 eqid 2438 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )
29 neg1cn 10417 . . . . . . 7  |-  -u 1  e.  CC
3029a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  CC )
31 ax-1cn 9332 . . . . . . . . . 10  |-  1  e.  CC
3231absnegi 12879 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
33 abs1 12778 . . . . . . . . 9  |-  ( abs `  1 )  =  1
3432, 33eqtri 2458 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
35 1le1 9956 . . . . . . . 8  |-  1  <_  1
3634, 35eqbrtri 4306 . . . . . . 7  |-  ( abs `  -u 1 )  <_ 
1
3736a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  ( abs `  -u 1 )  <_ 
1 )
3826, 27, 28, 20, 30, 37eftlub 13385 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  <_ 
( ( ( abs `  -u 1 ) ^
( N  +  1 ) )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
3920nnnn0d 10628 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
40 eluznn0 10916 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4139, 40sylan 471 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4226eftval 13354 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) `  k )  =  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
4341, 42syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
4443sumeq2dv 13172 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )
4544fveq2d 5690 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
4634oveq1i 6096 . . . . . . . 8  |-  ( ( abs `  -u 1
) ^ ( N  +  1 ) )  =  ( 1 ^ ( N  +  1 ) )
4720nnzd 10738 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
48 1exp 11885 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  ZZ  ->  (
1 ^ ( N  +  1 ) )  =  1 )
4947, 48syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ^ ( N  +  1 ) )  =  1 )
5046, 49syl5eq 2482 . . . . . . 7  |-  ( N  e.  NN  ->  (
( abs `  -u 1
) ^ ( N  +  1 ) )  =  1 )
5150oveq1d 6101 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( 1  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
52 faccl 12053 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
5339, 52syl 16 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  NN )
5453, 20nnmulcld 10361 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  NN )
5522, 54nndivred 10362 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  RR )
5655recnd 9404 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  CC )
5756mulid2d 9396 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
5851, 57eqtrd 2470 . . . . 5  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) )
5938, 45, 583brtr3d 4316 . . . 4  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) )
60 eqid 2438 . . . . . . 7  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
61 eftcl 13351 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6229, 61mpan 670 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
6341, 62syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6426eftlcvg 13382 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( N  +  1 )  e.  NN0 )  ->  seq ( N  + 
1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
6529, 39, 64sylancr 663 . . . . . . 7  |-  ( N  e.  NN  ->  seq ( N  +  1
) (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
6660, 47, 43, 63, 65isumcl 13220 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6766abscld 12914 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  e.  RR )
683nnred 10329 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR )
693nngt0d 10357 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( ! `  N
) )
70 lemul2 10174 . . . . 5  |-  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  e.  RR  /\  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <  ( ! `
 N ) ) )  ->  ( ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  <-> 
( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) ) )
7167, 55, 68, 69, 70syl112anc 1222 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  <_  ( (
( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )  <->  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )  <_  (
( ! `  N
)  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) ) ) )
7259, 71mpbid 210 . . 3  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
7312, 13subfacval2 27027 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
741, 73syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
75 nncn 10322 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
76 pncan 9608 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
7775, 31, 76sylancl 662 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
7877oveq2d 6102 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
7978sumeq1d 13170 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
8079oveq2d 6102 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8174, 80eqtr4d 2473 . . . . . . . 8  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8281oveq1d 6101 . . . . . . 7  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
83 divrec 10002 . . . . . . . . . 10  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
846, 8, 83mp3an23 1306 . . . . . . . . 9  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
854, 84syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
86 df-e 13346 . . . . . . . . . . . 12  |-  _e  =  ( exp `  1 )
8786oveq2i 6097 . . . . . . . . . . 11  |-  ( 1  /  _e )  =  ( 1  /  ( exp `  1 ) )
88 efneg 13374 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) ) )
8931, 88ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) )
90 efval 13357 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  ->  ( exp `  -u 1
)  =  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
9129, 90ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
9287, 89, 913eqtr2i 2464 . . . . . . . . . 10  |-  ( 1  /  _e )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
93 nn0uz 10887 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
9442adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
9562adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
96 0nn0 10586 . . . . . . . . . . . . 13  |-  0  e.  NN0
9726eftlcvg 13382 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  0  e.  NN0 )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
9829, 96, 97mp2an 672 . . . . . . . . . . . 12  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>
9998a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
10093, 60, 39, 94, 95, 99isumsplit 13295 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
10192, 100syl5eq 2482 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  _e )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
102101oveq2d 6102 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( 1  /  _e ) )  =  ( ( ! `
 N )  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
103 fzfid 11787 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  e. 
Fin )
104 elfznn0 11473 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) )  ->  k  e.  NN0 )
105104adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  k  e.  NN0 )
10629, 105, 61sylancr 663 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
107103, 106fsumcl 13202 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
1084, 107, 66adddid 9402 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
10985, 102, 1083eqtrd 2474 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
11082, 109eqtr4d 2473 . . . . . 6  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) )
1114, 66mulcld 9398 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
11211, 17, 111subaddd 9729 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  /  _e )  -  ( S `  N )
)  =  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <->  ( ( S `  N )  +  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) ) )
113110, 112mpbird 232 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
114113fveq2d 5690 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( abs `  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1154, 66absmuld 12932 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1163nnnn0d 10628 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN0 )
117116nn0ge0d 10631 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( ! `  N
) )
11868, 117absidd 12901 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  ( ! `  N ) )  =  ( ! `  N
) )
119118oveq1d 6101 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
120114, 115, 1193eqtrd 2474 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( ( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
121 facp1 12048 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1221, 121syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
123122oveq1d 6101 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
12420nncnd 10330 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1254, 124, 124mulassd 9401 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
126123, 125eqtr2d 2471 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
127126oveq2d 6102 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  +  1 )  +  1 ) )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
12821nncnd 10330 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  CC )
12923nncnd 10330 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  CC )
13023nnne0d 10358 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =/=  0 )
1313nnne0d 10358 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
132128, 129, 4, 130, 131divcan5d 10125 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
13354nncnd 10330 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  CC )
13454nnne0d 10358 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =/=  0 )
1354, 128, 133, 134divassd 10134 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
136127, 132, 1353eqtr3d 2478 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
13772, 120, 1363brtr4d 4317 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) ) )
138 nnmulcl 10337 . . . . . . 7  |-  ( ( ( ( N  + 
1 )  +  1 )  e.  NN  /\  N  e.  NN )  ->  ( ( ( N  +  1 )  +  1 )  x.  N
)  e.  NN )
13921, 138mpancom 669 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  NN )
140139nnred 10329 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  RR )
141140ltp1d 10255 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
142129mulid2d 9396 . . . . 5  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
14331a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  CC )
14475, 143, 124adddird 9403 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  ( N  + 
1 ) )  +  ( 1  x.  ( N  +  1 ) ) ) )
14575, 124mulcomd 9399 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  N ) )
146124mulid2d 9396 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  x.  ( N  +  1 ) )  =  ( N  + 
1 ) )
147145, 146oveq12d 6104 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
148124, 143, 75adddird 9403 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  =  ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N
) ) )
149148oveq1d 6101 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 ) )
15075mulid2d 9396 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
151150oveq2d 6102 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  +  ( 1  x.  N ) )  =  ( ( ( N  +  1 )  x.  N )  +  N ) )
152151oveq1d 6101 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  N )  +  1 ) )
153124, 75mulcld 9398 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  e.  CC )
154153, 75, 143addassd 9400 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
155149, 152, 1543eqtrd 2474 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
156147, 155eqtr4d 2473 . . . . 5  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
157142, 144, 1563eqtrd 2474 . . . 4  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
158141, 157breqtrrd 4313 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
159 nnre 10321 . . . . 5  |-  ( N  e.  NN  ->  N  e.  RR )
160 nngt0 10343 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
161159, 160jca 532 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
162 1re 9377 . . . . 5  |-  1  e.  RR
163162a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  RR )
164 nnre 10321 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  RR )
165 nngt0 10343 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  0  <  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )
166164, 165jca 532 . . . . 5  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
16723, 166syl 16 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
168 lt2mul2div 10200 . . . 4  |-  ( ( ( ( ( N  +  1 )  +  1 )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  /\  ( 1  e.  RR  /\  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) ) )  ->  ( (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
16922, 161, 163, 167, 168syl22anc 1219 . . 3  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  <  ( 1  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
170158, 169mpbid 210 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  <  ( 1  /  N ) )
17119, 24, 25, 137, 170lelttrd 9521 1  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2424    =/= wne 2601   A.wral 2710   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429    seqcseq 11798   ^cexp 11857   !cfa 12043   #chash 12095   abscabs 12715    ~~> cli 12954   sum_csu 13155   expce 13339   _eceu 13340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-e 13346
This theorem is referenced by:  subfacval3  27029
  Copyright terms: Public domain W3C validator