Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Unicode version

Theorem subfaclim 29907
Description: The subfactorial converges rapidly to  N !  /  _e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfaclim  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Distinct variable groups:    f, n, x, y, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfaclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 10877 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 12469 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
31, 2syl 17 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43nncnd 10626 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
5 ere 14131 . . . . . . 7  |-  _e  e.  RR
65recni 9656 . . . . . 6  |-  _e  e.  CC
7 epos 14247 . . . . . . 7  |-  0  <  _e
85, 7gt0ne0ii 10151 . . . . . 6  |-  _e  =/=  0
9 divcl 10277 . . . . . 6  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  e.  CC )
106, 8, 9mp3an23 1352 . . . . 5  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  e.  CC )
114, 10syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  e.  CC )
12 derang.d . . . . . . . 8  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
13 subfac.n . . . . . . . 8  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
1412, 13subfacf 29894 . . . . . . 7  |-  S : NN0
--> NN0
1514ffvelrni 6033 . . . . . 6  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
161, 15syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
1716nn0cnd 10928 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  e.  CC )
1811, 17subcld 9987 . . 3  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  CC )
1918abscld 13486 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  e.  RR )
20 peano2nn 10622 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2120peano2nnd 10627 . . . 4  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
2221nnred 10625 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR )
2320, 20nnmulcld 10658 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  NN )
2422, 23nndivred 10659 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  e.  RR )
25 nnrecre 10647 . 2  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
26 eqid 2422 . . . . . 6  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )
27 eqid 2422 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )
28 eqid 2422 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )
29 neg1cn 10714 . . . . . . 7  |-  -u 1  e.  CC
3029a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  CC )
31 ax-1cn 9598 . . . . . . . . . 10  |-  1  e.  CC
3231absnegi 13451 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
33 abs1 13349 . . . . . . . . 9  |-  ( abs `  1 )  =  1
3432, 33eqtri 2451 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
35 1le1 10241 . . . . . . . 8  |-  1  <_  1
3634, 35eqbrtri 4440 . . . . . . 7  |-  ( abs `  -u 1 )  <_ 
1
3736a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  ( abs `  -u 1 )  <_ 
1 )
3826, 27, 28, 20, 30, 37eftlub 14151 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  <_ 
( ( ( abs `  -u 1 ) ^
( N  +  1 ) )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
3920nnnn0d 10926 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
40 eluznn0 11229 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4139, 40sylan 473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4226eftval 14119 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) `  k )  =  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
4341, 42syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
4443sumeq2dv 13757 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )
4544fveq2d 5882 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
4634oveq1i 6312 . . . . . . . 8  |-  ( ( abs `  -u 1
) ^ ( N  +  1 ) )  =  ( 1 ^ ( N  +  1 ) )
4720nnzd 11040 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
48 1exp 12301 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  ZZ  ->  (
1 ^ ( N  +  1 ) )  =  1 )
4947, 48syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ^ ( N  +  1 ) )  =  1 )
5046, 49syl5eq 2475 . . . . . . 7  |-  ( N  e.  NN  ->  (
( abs `  -u 1
) ^ ( N  +  1 ) )  =  1 )
5150oveq1d 6317 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( 1  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
52 faccl 12469 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
5339, 52syl 17 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  NN )
5453, 20nnmulcld 10658 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  NN )
5522, 54nndivred 10659 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  RR )
5655recnd 9670 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  CC )
5756mulid2d 9662 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
5851, 57eqtrd 2463 . . . . 5  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) )
5938, 45, 583brtr3d 4450 . . . 4  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) )
60 eqid 2422 . . . . . . 7  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
61 eftcl 14116 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6229, 61mpan 674 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
6341, 62syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6426eftlcvg 14148 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( N  +  1 )  e.  NN0 )  ->  seq ( N  + 
1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
6529, 39, 64sylancr 667 . . . . . . 7  |-  ( N  e.  NN  ->  seq ( N  +  1
) (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
6660, 47, 43, 63, 65isumcl 13810 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6766abscld 13486 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  e.  RR )
683nnred 10625 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR )
693nngt0d 10654 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( ! `  N
) )
70 lemul2 10459 . . . . 5  |-  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  e.  RR  /\  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <  ( ! `
 N ) ) )  ->  ( ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  <-> 
( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) ) )
7167, 55, 68, 69, 70syl112anc 1268 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  <_  ( (
( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )  <->  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )  <_  (
( ! `  N
)  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) ) ) )
7259, 71mpbid 213 . . 3  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
7312, 13subfacval2 29906 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
741, 73syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
75 nncn 10618 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
76 pncan 9882 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
7775, 31, 76sylancl 666 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
7877oveq2d 6318 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
7978sumeq1d 13755 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
8079oveq2d 6318 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8174, 80eqtr4d 2466 . . . . . . . 8  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8281oveq1d 6317 . . . . . . 7  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
83 divrec 10287 . . . . . . . . . 10  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
846, 8, 83mp3an23 1352 . . . . . . . . 9  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
854, 84syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
86 df-e 14110 . . . . . . . . . . . 12  |-  _e  =  ( exp `  1 )
8786oveq2i 6313 . . . . . . . . . . 11  |-  ( 1  /  _e )  =  ( 1  /  ( exp `  1 ) )
88 efneg 14140 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) ) )
8931, 88ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) )
90 efval 14122 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  ->  ( exp `  -u 1
)  =  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
9129, 90ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
9287, 89, 913eqtr2i 2457 . . . . . . . . . 10  |-  ( 1  /  _e )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
93 nn0uz 11194 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
9442adantl 467 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
9562adantl 467 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
96 0nn0 10885 . . . . . . . . . . . . 13  |-  0  e.  NN0
9726eftlcvg 14148 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  0  e.  NN0 )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
9829, 96, 97mp2an 676 . . . . . . . . . . . 12  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>
9998a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
10093, 60, 39, 94, 95, 99isumsplit 13886 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
10192, 100syl5eq 2475 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  _e )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
102101oveq2d 6318 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( 1  /  _e ) )  =  ( ( ! `
 N )  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
103 fzfid 12186 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  e. 
Fin )
104 elfznn0 11888 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) )  ->  k  e.  NN0 )
105104adantl 467 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  k  e.  NN0 )
10629, 105, 61sylancr 667 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
107103, 106fsumcl 13787 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
1084, 107, 66adddid 9668 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
10985, 102, 1083eqtrd 2467 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
11082, 109eqtr4d 2466 . . . . . 6  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) )
1114, 66mulcld 9664 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
11211, 17, 111subaddd 10005 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  /  _e )  -  ( S `  N )
)  =  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <->  ( ( S `  N )  +  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) ) )
113110, 112mpbird 235 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
114113fveq2d 5882 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( abs `  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1154, 66absmuld 13504 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1163nnnn0d 10926 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN0 )
117116nn0ge0d 10929 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( ! `  N
) )
11868, 117absidd 13473 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  ( ! `  N ) )  =  ( ! `  N
) )
119118oveq1d 6317 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
120114, 115, 1193eqtrd 2467 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( ( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
121 facp1 12464 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1221, 121syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
123122oveq1d 6317 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
12420nncnd 10626 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1254, 124, 124mulassd 9667 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
126123, 125eqtr2d 2464 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
127126oveq2d 6318 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  +  1 )  +  1 ) )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
12821nncnd 10626 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  CC )
12923nncnd 10626 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  CC )
13023nnne0d 10655 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =/=  0 )
1313nnne0d 10655 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
132128, 129, 4, 130, 131divcan5d 10410 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
13354nncnd 10626 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  CC )
13454nnne0d 10655 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =/=  0 )
1354, 128, 133, 134divassd 10419 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
136127, 132, 1353eqtr3d 2471 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
13772, 120, 1363brtr4d 4451 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) ) )
138 nnmulcl 10633 . . . . . . 7  |-  ( ( ( ( N  + 
1 )  +  1 )  e.  NN  /\  N  e.  NN )  ->  ( ( ( N  +  1 )  +  1 )  x.  N
)  e.  NN )
13921, 138mpancom 673 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  NN )
140139nnred 10625 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  RR )
141140ltp1d 10538 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
142129mulid2d 9662 . . . . 5  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
14331a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  CC )
14475, 143, 124adddird 9669 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  ( N  + 
1 ) )  +  ( 1  x.  ( N  +  1 ) ) ) )
14575, 124mulcomd 9665 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  N ) )
146124mulid2d 9662 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  x.  ( N  +  1 ) )  =  ( N  + 
1 ) )
147145, 146oveq12d 6320 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
148124, 143, 75adddird 9669 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  =  ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N
) ) )
149148oveq1d 6317 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 ) )
15075mulid2d 9662 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
151150oveq2d 6318 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  +  ( 1  x.  N ) )  =  ( ( ( N  +  1 )  x.  N )  +  N ) )
152151oveq1d 6317 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  N )  +  1 ) )
153124, 75mulcld 9664 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  e.  CC )
154153, 75, 143addassd 9666 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
155149, 152, 1543eqtrd 2467 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
156147, 155eqtr4d 2466 . . . . 5  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
157142, 144, 1563eqtrd 2467 . . . 4  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
158141, 157breqtrrd 4447 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
159 nnre 10617 . . . . 5  |-  ( N  e.  NN  ->  N  e.  RR )
160 nngt0 10639 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
161159, 160jca 534 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
162 1red 9659 . . . 4  |-  ( N  e.  NN  ->  1  e.  RR )
163 nnre 10617 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  RR )
164 nngt0 10639 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  0  <  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )
165163, 164jca 534 . . . . 5  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
16623, 165syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
167 lt2mul2div 10484 . . . 4  |-  ( ( ( ( ( N  +  1 )  +  1 )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  /\  ( 1  e.  RR  /\  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) ) )  ->  ( (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
16822, 161, 162, 166, 167syl22anc 1265 . . 3  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  <  ( 1  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
169158, 168mpbid 213 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  <  ( 1  /  N ) )
17019, 24, 25, 137, 169lelttrd 9794 1  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   {cab 2407    =/= wne 2618   A.wral 2775   class class class wbr 4420    |-> cmpt 4479   dom cdm 4850   -1-1-onto->wf1o 5597   ` cfv 5598  (class class class)co 6302   Fincfn 7574   CCcc 9538   RRcr 9539   0cc0 9540   1c1 9541    + caddc 9543    x. cmul 9545    < clt 9676    <_ cle 9677    - cmin 9861   -ucneg 9862    / cdiv 10270   NNcn 10610   NN0cn0 10870   ZZcz 10938   ZZ>=cuz 11160   ...cfz 11785    seqcseq 12213   ^cexp 12272   !cfa 12459   #chash 12515   abscabs 13286    ~~> cli 13536   sum_csu 13740   expce 14102   _eceu 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618  ax-addf 9619  ax-mulf 9620
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7959  df-inf 7960  df-oi 8028  df-card 8375  df-cda 8599  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-n0 10871  df-z 10939  df-uz 11161  df-q 11266  df-rp 11304  df-ico 11642  df-fz 11786  df-fzo 11917  df-fl 12028  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13119  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-limsup 13514  df-clim 13540  df-rlim 13541  df-sum 13741  df-ef 14109  df-e 14110
This theorem is referenced by:  subfacval3  29908
  Copyright terms: Public domain W3C validator