Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   Unicode version

Theorem subfaclim 29983
Description: The subfactorial converges rapidly to  N !  /  _e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfaclim  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Distinct variable groups:    f, n, x, y, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfaclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 10900 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 12507 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
31, 2syl 17 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43nncnd 10647 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
5 ere 14220 . . . . . . 7  |-  _e  e.  RR
65recni 9673 . . . . . 6  |-  _e  e.  CC
7 epos 14336 . . . . . . 7  |-  0  <  _e
85, 7gt0ne0ii 10171 . . . . . 6  |-  _e  =/=  0
9 divcl 10298 . . . . . 6  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  e.  CC )
106, 8, 9mp3an23 1382 . . . . 5  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  e.  CC )
114, 10syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  e.  CC )
12 derang.d . . . . . . . 8  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
13 subfac.n . . . . . . . 8  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
1412, 13subfacf 29970 . . . . . . 7  |-  S : NN0
--> NN0
1514ffvelrni 6036 . . . . . 6  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
161, 15syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
1716nn0cnd 10951 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  e.  CC )
1811, 17subcld 10005 . . 3  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  CC )
1918abscld 13575 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  e.  RR )
20 peano2nn 10643 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2120peano2nnd 10648 . . . 4  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
2221nnred 10646 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR )
2320, 20nnmulcld 10679 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  NN )
2422, 23nndivred 10680 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  e.  RR )
25 nnrecre 10668 . 2  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
26 eqid 2471 . . . . . 6  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )
27 eqid 2471 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )
28 eqid 2471 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )
29 neg1cn 10735 . . . . . . 7  |-  -u 1  e.  CC
3029a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  CC )
31 ax-1cn 9615 . . . . . . . . . 10  |-  1  e.  CC
3231absnegi 13539 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
33 abs1 13437 . . . . . . . . 9  |-  ( abs `  1 )  =  1
3432, 33eqtri 2493 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
35 1le1 10262 . . . . . . . 8  |-  1  <_  1
3634, 35eqbrtri 4415 . . . . . . 7  |-  ( abs `  -u 1 )  <_ 
1
3736a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  ( abs `  -u 1 )  <_ 
1 )
3826, 27, 28, 20, 30, 37eftlub 14240 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  <_ 
( ( ( abs `  -u 1 ) ^
( N  +  1 ) )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
3920nnnn0d 10949 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
40 eluznn0 11251 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4139, 40sylan 479 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4226eftval 14208 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) `  k )  =  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
4341, 42syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
4443sumeq2dv 13846 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )
4544fveq2d 5883 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
4634oveq1i 6318 . . . . . . . 8  |-  ( ( abs `  -u 1
) ^ ( N  +  1 ) )  =  ( 1 ^ ( N  +  1 ) )
4720nnzd 11062 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
48 1exp 12339 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  ZZ  ->  (
1 ^ ( N  +  1 ) )  =  1 )
4947, 48syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ^ ( N  +  1 ) )  =  1 )
5046, 49syl5eq 2517 . . . . . . 7  |-  ( N  e.  NN  ->  (
( abs `  -u 1
) ^ ( N  +  1 ) )  =  1 )
5150oveq1d 6323 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( 1  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
52 faccl 12507 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
5339, 52syl 17 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  NN )
5453, 20nnmulcld 10679 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  NN )
5522, 54nndivred 10680 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  RR )
5655recnd 9687 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  CC )
5756mulid2d 9679 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
5851, 57eqtrd 2505 . . . . 5  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) )
5938, 45, 583brtr3d 4425 . . . 4  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) )
60 eqid 2471 . . . . . . 7  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
61 eftcl 14205 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6229, 61mpan 684 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
6341, 62syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6426eftlcvg 14237 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( N  +  1 )  e.  NN0 )  ->  seq ( N  + 
1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
6529, 39, 64sylancr 676 . . . . . . 7  |-  ( N  e.  NN  ->  seq ( N  +  1
) (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
6660, 47, 43, 63, 65isumcl 13899 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6766abscld 13575 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  e.  RR )
683nnred 10646 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR )
693nngt0d 10675 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( ! `  N
) )
70 lemul2 10480 . . . . 5  |-  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  e.  RR  /\  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <  ( ! `
 N ) ) )  ->  ( ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  <-> 
( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) ) )
7167, 55, 68, 69, 70syl112anc 1296 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  <_  ( (
( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )  <->  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )  <_  (
( ! `  N
)  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) ) ) )
7259, 71mpbid 215 . . 3  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
7312, 13subfacval2 29982 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
741, 73syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
75 nncn 10639 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
76 pncan 9901 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
7775, 31, 76sylancl 675 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
7877oveq2d 6324 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
7978sumeq1d 13844 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
8079oveq2d 6324 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8174, 80eqtr4d 2508 . . . . . . . 8  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8281oveq1d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
83 divrec 10308 . . . . . . . . . 10  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
846, 8, 83mp3an23 1382 . . . . . . . . 9  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
854, 84syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
86 df-e 14199 . . . . . . . . . . . 12  |-  _e  =  ( exp `  1 )
8786oveq2i 6319 . . . . . . . . . . 11  |-  ( 1  /  _e )  =  ( 1  /  ( exp `  1 ) )
88 efneg 14229 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) ) )
8931, 88ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) )
90 efval 14211 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  ->  ( exp `  -u 1
)  =  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
9129, 90ax-mp 5 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
9287, 89, 913eqtr2i 2499 . . . . . . . . . 10  |-  ( 1  /  _e )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
93 nn0uz 11217 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
9442adantl 473 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
9562adantl 473 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
96 0nn0 10908 . . . . . . . . . . . . 13  |-  0  e.  NN0
9726eftlcvg 14237 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  0  e.  NN0 )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
9829, 96, 97mp2an 686 . . . . . . . . . . . 12  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>
9998a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
10093, 60, 39, 94, 95, 99isumsplit 13975 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
10192, 100syl5eq 2517 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  _e )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
102101oveq2d 6324 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( 1  /  _e ) )  =  ( ( ! `
 N )  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
103 fzfid 12224 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  e. 
Fin )
104 elfznn0 11913 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) )  ->  k  e.  NN0 )
105104adantl 473 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  k  e.  NN0 )
10629, 105, 61sylancr 676 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
107103, 106fsumcl 13876 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
1084, 107, 66adddid 9685 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
10985, 102, 1083eqtrd 2509 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
11082, 109eqtr4d 2508 . . . . . 6  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) )
1114, 66mulcld 9681 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
11211, 17, 111subaddd 10023 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  /  _e )  -  ( S `  N )
)  =  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <->  ( ( S `  N )  +  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) ) )
113110, 112mpbird 240 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
114113fveq2d 5883 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( abs `  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1154, 66absmuld 13593 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1163nnnn0d 10949 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN0 )
117116nn0ge0d 10952 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( ! `  N
) )
11868, 117absidd 13561 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  ( ! `  N ) )  =  ( ! `  N
) )
119118oveq1d 6323 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
120114, 115, 1193eqtrd 2509 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( ( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
121 facp1 12502 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1221, 121syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
123122oveq1d 6323 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
12420nncnd 10647 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1254, 124, 124mulassd 9684 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
126123, 125eqtr2d 2506 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
127126oveq2d 6324 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  +  1 )  +  1 ) )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
12821nncnd 10647 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  CC )
12923nncnd 10647 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  CC )
13023nnne0d 10676 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =/=  0 )
1313nnne0d 10676 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
132128, 129, 4, 130, 131divcan5d 10431 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
13354nncnd 10647 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  CC )
13454nnne0d 10676 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =/=  0 )
1354, 128, 133, 134divassd 10440 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
136127, 132, 1353eqtr3d 2513 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
13772, 120, 1363brtr4d 4426 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) ) )
138 nnmulcl 10654 . . . . . . 7  |-  ( ( ( ( N  + 
1 )  +  1 )  e.  NN  /\  N  e.  NN )  ->  ( ( ( N  +  1 )  +  1 )  x.  N
)  e.  NN )
13921, 138mpancom 682 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  NN )
140139nnred 10646 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  RR )
141140ltp1d 10559 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
142129mulid2d 9679 . . . . 5  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
14331a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  CC )
14475, 143, 124adddird 9686 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  ( N  + 
1 ) )  +  ( 1  x.  ( N  +  1 ) ) ) )
14575, 124mulcomd 9682 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  N ) )
146124mulid2d 9679 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  x.  ( N  +  1 ) )  =  ( N  + 
1 ) )
147145, 146oveq12d 6326 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
148124, 143, 75adddird 9686 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  =  ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N
) ) )
149148oveq1d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 ) )
15075mulid2d 9679 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
151150oveq2d 6324 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  +  ( 1  x.  N ) )  =  ( ( ( N  +  1 )  x.  N )  +  N ) )
152151oveq1d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  N )  +  1 ) )
153124, 75mulcld 9681 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  e.  CC )
154153, 75, 143addassd 9683 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
155149, 152, 1543eqtrd 2509 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
156147, 155eqtr4d 2508 . . . . 5  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
157142, 144, 1563eqtrd 2509 . . . 4  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
158141, 157breqtrrd 4422 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
159 nnre 10638 . . . . 5  |-  ( N  e.  NN  ->  N  e.  RR )
160 nngt0 10660 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
161159, 160jca 541 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
162 1red 9676 . . . 4  |-  ( N  e.  NN  ->  1  e.  RR )
163 nnre 10638 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  RR )
164 nngt0 10660 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  0  <  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )
165163, 164jca 541 . . . . 5  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
16623, 165syl 17 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
167 lt2mul2div 10505 . . . 4  |-  ( ( ( ( ( N  +  1 )  +  1 )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  /\  ( 1  e.  RR  /\  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) ) )  ->  ( (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
16822, 161, 162, 166, 167syl22anc 1293 . . 3  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  <  ( 1  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
169158, 168mpbid 215 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  <  ( 1  /  N ) )
17019, 24, 25, 137, 169lelttrd 9810 1  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   class class class wbr 4395    |-> cmpt 4454   dom cdm 4839   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810    seqcseq 12251   ^cexp 12310   !cfa 12497   #chash 12553   abscabs 13374    ~~> cli 13625   sum_csu 13829   expce 14191   _eceu 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-ico 11666  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199
This theorem is referenced by:  subfacval3  29984
  Copyright terms: Public domain W3C validator