MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subf Structured version   Unicode version

Theorem subf 9617
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
subf  |-  -  :
( CC  X.  CC )
--> CC

Proof of Theorem subf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subval 9606 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  =  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
2 subcl 9614 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
31, 2eqeltrrd 2518 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC )
43rgen2a 2787 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC
5 df-sub 9602 . . 3  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
65fmpt2 6646 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC  <->  -  : ( CC  X.  CC ) --> CC )
74, 6mpbi 208 1  |-  -  :
( CC  X.  CC )
--> CC
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720    X. cxp 4843   -->wf 5419   iota_crio 6056  (class class class)co 6096   CCcc 9285    + caddc 9290    - cmin 9600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-ltxr 9428  df-sub 9602
This theorem is referenced by:  dfz2  10669  zexALT  10670  rlimsub  13126  znnen  13500  cnfldds  17833  cnfldsub  17849  cnmetdval  20355  cnmet  20356  cnfldms  20360  subcn  20447  cnfldcusp  20874  ovolfsf  20960  ovolctb  20978  dvlip2  21472  cnnvm  24078  mblfinlem2  28434  sblpnf  29601
  Copyright terms: Public domain W3C validator