MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Unicode version

Theorem subeq0 9845
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <-> 
A  =  B ) )

Proof of Theorem subeq0
StepHypRef Expression
1 subid 9838 . . . 4  |-  ( B  e.  CC  ->  ( B  -  B )  =  0 )
21adantl 466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  B
)  =  0 )
32eqeq2d 2481 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  ( B  -  B )  <-> 
( A  -  B
)  =  0 ) )
4 subcan2 9844 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( A  -  B
)  =  ( B  -  B )  <->  A  =  B ) )
543anidm23 1287 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  ( B  -  B )  <-> 
A  =  B ) )
63, 5bitr3d 255 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6284   CCcc 9490   0cc0 9492    - cmin 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633  df-sub 9807
This theorem is referenced by:  subeq0i  9899  subeq0d  9938  subne0d  9939  subeq0ad  9940  mulcan1g  10202  div2sub  10369  cju  10532  nn0sub  10846  geoserg  13640  geolim  13642  geolim2  13643  georeclim  13644  geoisum1c  13652  tanadd  13763  fzocongeq  13899  divalglem8  13917  mndodcongi  16373  odf1  16390  odf1o1  16398  cnmet  21042  iccpnfhmeo  21208  plyremlem  22462  geolim3  22497  abelthlem2  22589  abelthlem7  22595  efeq1  22677  tanregt0  22687  logtayl  22797  ang180lem1  22897  ang180lem2  22898  ang180lem3  22899  lawcos  22904  isosctrlem1  22908  isosctrlem2  22909  atandm2  22964  atandm4  22966  2efiatan  23005  tanatan  23006  dvatan  23022  mumullem2  23210  mersenne  23258  dchrsum2  23299  sumdchr2  23301  axcgrid  23923  axcontlem2  23972  hvmulcan2  25694  rencldnfilem  30386  qirropth  30476  dvconstbi  30867  isosctrlem1ALT  32832
  Copyright terms: Public domain W3C validator