MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Unicode version

Theorem subeq0 9745
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <-> 
A  =  B ) )

Proof of Theorem subeq0
StepHypRef Expression
1 subid 9738 . . . 4  |-  ( B  e.  CC  ->  ( B  -  B )  =  0 )
21adantl 466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  B
)  =  0 )
32eqeq2d 2468 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  ( B  -  B )  <-> 
( A  -  B
)  =  0 ) )
4 subcan2 9744 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( A  -  B
)  =  ( B  -  B )  <->  A  =  B ) )
543anidm23 1278 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  ( B  -  B )  <-> 
A  =  B ) )
63, 5bitr3d 255 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758  (class class class)co 6199   CCcc 9390   0cc0 9392    - cmin 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-ltxr 9533  df-sub 9707
This theorem is referenced by:  subeq0i  9798  subeq0d  9837  subne0d  9838  subeq0ad  9839  mulcan1g  10099  div2sub  10266  cju  10428  nn0sub  10740  geoserg  13445  geolim  13447  geolim2  13448  georeclim  13449  geoisum1c  13457  tanadd  13568  fzocongeq  13704  divalglem8  13721  mndodcongi  16166  odf1  16183  odf1o1  16191  cnmet  20482  iccpnfhmeo  20648  plyremlem  21902  geolim3  21937  abelthlem2  22029  abelthlem7  22035  efeq1  22117  tanregt0  22127  logtayl  22237  ang180lem1  22337  ang180lem2  22338  ang180lem3  22339  lawcos  22344  isosctrlem1  22348  isosctrlem2  22349  atandm2  22404  atandm4  22406  2efiatan  22445  tanatan  22446  dvatan  22462  mumullem2  22650  mersenne  22698  dchrsum2  22739  sumdchr2  22741  axcgrid  23313  axcontlem2  23362  hvmulcan2  24626  rencldnfilem  29306  qirropth  29396  dvconstbi  29755  isosctrlem1ALT  31987
  Copyright terms: Public domain W3C validator