MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Structured version   Unicode version

Theorem subcn2 13383
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem subcn2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 negcl 9821 . . 3  |-  ( C  e.  CC  ->  -u C  e.  CC )
2 addcn2 13382 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  -u C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
31, 2syl3an3 1263 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
4 negcl 9821 . . . . . . . . 9  |-  ( v  e.  CC  ->  -u v  e.  CC )
5 oveq1 6292 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
w  -  -u C
)  =  ( -u v  -  -u C ) )
65fveq2d 5870 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  ( abs `  ( w  -  -u C ) )  =  ( abs `  ( -u v  -  -u C
) ) )
76breq1d 4457 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  (
( abs `  (
w  -  -u C
) )  <  z  <->  ( abs `  ( -u v  -  -u C ) )  <  z ) )
87anbi2d 703 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( -u v  -  -u C ) )  < 
z ) ) )
9 oveq2 6293 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
u  +  w )  =  ( u  +  -u v ) )
109oveq1d 6300 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  (
( u  +  w
)  -  ( B  +  -u C ) )  =  ( ( u  +  -u v )  -  ( B  +  -u C
) ) )
1110fveq2d 5870 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  =  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) ) )
1211breq1d 4457 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) )
138, 12imbi12d 320 . . . . . . . . . 10  |-  ( w  =  -u v  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1413rspcv 3210 . . . . . . . . 9  |-  ( -u v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
154, 14syl 16 . . . . . . . 8  |-  ( v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1615adantl 466 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
17 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  v  e.  CC )
18 simpll3 1037 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  C  e.  CC )
1917, 18neg2subd 9948 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( -u v  -  -u C )  =  ( C  -  v
) )
2019fveq2d 5870 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( C  -  v ) ) )
2118, 17abssubd 13250 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( C  -  v )
)  =  ( abs `  ( v  -  C
) ) )
2220, 21eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( v  -  C ) ) )
2322breq1d 4457 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( -u v  -  -u C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  z ) )
2423anbi2d 703 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
25 negsub 9868 . . . . . . . . . . . 12  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
2625adantll 713 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
27 simpll2 1036 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  B  e.  CC )
2827, 18negsubd 9937 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( B  +  -u C )  =  ( B  -  C ) )
2926, 28oveq12d 6303 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( u  +  -u v )  -  ( B  +  -u C
) )  =  ( ( u  -  v
)  -  ( B  -  C ) ) )
3029fveq2d 5870 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  =  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) ) )
3130breq1d 4457 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) )  <  A ) )
3224, 31imbi12d 320 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3316, 32sylibd 214 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3433ralrimdva 2882 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3534ralimdva 2872 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A )  ->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3635reximdv 2937 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3736reximdv 2937 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
383, 37mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   class class class wbr 4447   ` cfv 5588  (class class class)co 6285   CCcc 9491    + caddc 9496    < clt 9629    - cmin 9806   -ucneg 9807   RR+crp 11221   abscabs 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035
This theorem is referenced by:  climsub  13422  rlimsub  13432  subcn  21197
  Copyright terms: Public domain W3C validator