MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccocl Unicode version

Theorem subccocl 13997
Description: A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j  |-  ( ph  ->  J  e.  (Subcat `  C ) )
subcidcl.2  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
subcidcl.x  |-  ( ph  ->  X  e.  S )
subccocl.o  |-  .x.  =  (comp `  C )
subccocl.y  |-  ( ph  ->  Y  e.  S )
subccocl.z  |-  ( ph  ->  Z  e.  S )
subccocl.f  |-  ( ph  ->  F  e.  ( X J Y ) )
subccocl.g  |-  ( ph  ->  G  e.  ( Y J Z ) )
Assertion
Ref Expression
subccocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) )

Proof of Theorem subccocl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcidcl.j . . . 4  |-  ( ph  ->  J  e.  (Subcat `  C ) )
2 eqid 2404 . . . . 5  |-  (  Homf  `  C )  =  (  Homf 
`  C )
3 eqid 2404 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
4 subccocl.o . . . . 5  |-  .x.  =  (comp `  C )
5 subcrcl 13971 . . . . . 6  |-  ( J  e.  (Subcat `  C
)  ->  C  e.  Cat )
61, 5syl 16 . . . . 5  |-  ( ph  ->  C  e.  Cat )
7 subcidcl.2 . . . . 5  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
82, 3, 4, 6, 7issubc2 13991 . . . 4  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  (  Homf 
`  C )  /\  A. x  e.  S  ( ( ( Id `  C ) `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) ) )
91, 8mpbid 202 . . 3  |-  ( ph  ->  ( J  C_cat  (  Homf  `  C )  /\  A. x  e.  S  (
( ( Id `  C ) `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) )
109simprd 450 . 2  |-  ( ph  ->  A. x  e.  S  ( ( ( Id
`  C ) `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
11 subcidcl.x . . 3  |-  ( ph  ->  X  e.  S )
12 subccocl.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
1312adantr 452 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  S )
14 subccocl.z . . . . . . 7  |-  ( ph  ->  Z  e.  S )
1514ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  S )
16 subccocl.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( X J Y ) )
1716ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X J Y ) )
18 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
19 simplr 732 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2018, 19oveq12d 6058 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x J y )  =  ( X J Y ) )
2117, 20eleqtrrd 2481 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x J y ) )
22 subccocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y J Z ) )
2322ad4antr 713 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( Y J Z ) )
24 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  y  =  Y )
25 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  z  =  Z )
2624, 25oveq12d 6058 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  (
y J z )  =  ( Y J Z ) )
2723, 26eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y J z ) )
28 simp-5r 746 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
29 simp-4r 744 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3028, 29opeq12d 3952 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
31 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3230, 31oveq12d 6058 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
33 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
34 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
3532, 33, 34oveq123d 6061 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
3628, 31oveq12d 6058 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x J z )  =  ( X J Z ) )
3735, 36eleq12d 2472 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
3827, 37rspcdv 3015 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
3921, 38rspcimdv 3013 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4015, 39rspcimdv 3013 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  S  A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4113, 40rspcimdv 3013 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  S  A. z  e.  S  A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4241adantld 454 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (
( ( ( Id
`  C ) `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) )  -> 
( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) ) )
4311, 42rspcimdv 3013 . 2  |-  ( ph  ->  ( A. x  e.  S  ( ( ( Id `  C ) `
 x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) )  -> 
( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) ) )
4410, 43mpd 15 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   <.cop 3777   class class class wbr 4172    X. cxp 4835    Fn wfn 5408   ` cfv 5413  (class class class)co 6040  compcco 13496   Catccat 13844   Idccid 13845    Homf chomf 13846    C_cat cssc 13962  Subcatcsubc 13964
This theorem is referenced by:  subccatid  13998  funcres  14048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-pm 6980  df-ixp 7023  df-ssc 13965  df-subc 13967
  Copyright terms: Public domain W3C validator