MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   Unicode version

Theorem subbascn 20347
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
subbascn.2  |-  ( ph  ->  B  e.  V )
subbascn.3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
subbascn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
subbascn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, X    y, Y    y, K
Allowed substitution hints:    ph( y)    V( y)

Proof of Theorem subbascn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 subbascn.3 . . 3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
3 subbascn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
41, 2, 3tgcn 20345 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) ) )
5 subbascn.2 . . . . . 6  |-  ( ph  ->  B  e.  V )
65adantr 472 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  B  e.  V )
7 ssfii 7951 . . . . 5  |-  ( B  e.  V  ->  B  C_  ( fi `  B
) )
8 ssralv 3479 . . . . 5  |-  ( B 
C_  ( fi `  B )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
96, 7, 83syl 18 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
10 vex 3034 . . . . . . . . 9  |-  x  e. 
_V
11 elfi 7945 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  B  e.  V )  ->  ( x  e.  ( fi `  B )  <->  E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z
) )
1210, 6, 11sylancr 676 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  <->  E. z  e.  ( ~P B  i^i  Fin ) x  =  |^| z ) )
13 simpr2 1037 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  x  =  |^| z )
1413imaeq2d 5174 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  ( `' F "
|^| z ) )
15 ffun 5742 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
1615ad2antlr 741 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  Fun  F )
1713, 10syl6eqelr 2558 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^| z  e.  _V )
18 intex 4557 . . . . . . . . . . . . . 14  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
1917, 18sylibr 217 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  =/=  (/) )
20 intpreima 6026 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  z  =/=  (/) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2116, 19, 20syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2214, 21eqtrd 2505 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  |^|_ y  e.  z  ( `' F "
y ) )
23 topontop 20018 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
241, 23syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
2524ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  J  e.  Top )
26 inss2 3644 . . . . . . . . . . . . 13  |-  ( ~P B  i^i  Fin )  C_ 
Fin
27 simpr1 1036 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ( ~P B  i^i  Fin ) )
2826, 27sseldi 3416 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  Fin )
29 inss1 3643 . . . . . . . . . . . . . . 15  |-  ( ~P B  i^i  Fin )  C_ 
~P B
3029, 27sseldi 3416 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ~P B )
3130elpwid 3952 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  C_  B )
32 simpr3 1038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  B  ( `' F " y )  e.  J )
33 ssralv 3479 . . . . . . . . . . . . 13  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
3431, 32, 33sylc 61 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  z  ( `' F " y )  e.  J )
35 iinopn 20009 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( z  e.  Fin  /\  z  =/=  (/)  /\  A. y  e.  z  ( `' F " y )  e.  J ) )  ->  |^|_ y  e.  z  ( `' F "
y )  e.  J
)
3625, 28, 19, 34, 35syl13anc 1294 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^|_ y  e.  z  ( `' F " y )  e.  J )
3722, 36eqeltrd 2549 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  e.  J )
38373exp2 1251 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> Y )  ->  (
z  e.  ( ~P B  i^i  Fin )  ->  ( x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) ) )
3938rexlimdv 2870 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  ( E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4012, 39sylbid 223 . . . . . . 7  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  -> 
( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4140com23 80 . . . . . 6  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  (
x  e.  ( fi
`  B )  -> 
( `' F "
x )  e.  J
) ) )
4241ralrimdv 2811 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
) )
43 imaeq2 5170 . . . . . . 7  |-  ( y  =  x  ->  ( `' F " y )  =  ( `' F " x ) )
4443eleq1d 2533 . . . . . 6  |-  ( y  =  x  ->  (
( `' F "
y )  e.  J  <->  ( `' F " x )  e.  J ) )
4544cbvralv 3005 . . . . 5  |-  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
)
4642, 45syl6ibr 235 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) )
479, 46impbid 195 . . 3  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4847pm5.32da 653 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
)  <->  ( F : X
--> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
494, 48bitrd 261 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   |^|cint 4226   |^|_ciin 4270   `'ccnv 4838   "cima 4842   Fun wfun 5583   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   ficfi 7942   topGenctg 15414   Topctop 19994  TopOnctopon 19995    Cn ccn 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-fin 7591  df-fi 7943  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320
This theorem is referenced by:  xkoccn  20711  ptrescn  20731  xkoco1cn  20749  xkoco2cn  20750  xkococn  20752  xkoinjcn  20779  ordthmeolem  20893
  Copyright terms: Public domain W3C validator