MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Unicode version

Theorem subbascn 19537
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
subbascn.2  |-  ( ph  ->  B  e.  V )
subbascn.3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
subbascn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
subbascn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, X    y, Y    y, K
Allowed substitution hints:    ph( y)    V( y)

Proof of Theorem subbascn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 subbascn.3 . . 3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
3 subbascn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
41, 2, 3tgcn 19535 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) ) )
5 subbascn.2 . . . . . 6  |-  ( ph  ->  B  e.  V )
65adantr 465 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  B  e.  V )
7 ssfii 7878 . . . . 5  |-  ( B  e.  V  ->  B  C_  ( fi `  B
) )
8 ssralv 3564 . . . . 5  |-  ( B 
C_  ( fi `  B )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
96, 7, 83syl 20 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
10 vex 3116 . . . . . . . . 9  |-  x  e. 
_V
11 elfi 7872 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  B  e.  V )  ->  ( x  e.  ( fi `  B )  <->  E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z
) )
1210, 6, 11sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  <->  E. z  e.  ( ~P B  i^i  Fin ) x  =  |^| z ) )
13 simpr2 1003 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  x  =  |^| z )
1413imaeq2d 5336 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  ( `' F "
|^| z ) )
15 ffun 5732 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
1615ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  Fun  F )
1713, 10syl6eqelr 2564 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^| z  e.  _V )
18 intex 4603 . . . . . . . . . . . . . 14  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
1917, 18sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  =/=  (/) )
20 intpreima 6011 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  z  =/=  (/) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2116, 19, 20syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2214, 21eqtrd 2508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  |^|_ y  e.  z  ( `' F "
y ) )
23 topontop 19210 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
241, 23syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
2524ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  J  e.  Top )
26 inss2 3719 . . . . . . . . . . . . 13  |-  ( ~P B  i^i  Fin )  C_ 
Fin
27 simpr1 1002 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ( ~P B  i^i  Fin ) )
2826, 27sseldi 3502 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  Fin )
29 inss1 3718 . . . . . . . . . . . . . . 15  |-  ( ~P B  i^i  Fin )  C_ 
~P B
3029, 27sseldi 3502 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ~P B )
3130elpwid 4020 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  C_  B )
32 simpr3 1004 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  B  ( `' F " y )  e.  J )
33 ssralv 3564 . . . . . . . . . . . . 13  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
3431, 32, 33sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  z  ( `' F " y )  e.  J )
35 iinopn 19194 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( z  e.  Fin  /\  z  =/=  (/)  /\  A. y  e.  z  ( `' F " y )  e.  J ) )  ->  |^|_ y  e.  z  ( `' F "
y )  e.  J
)
3625, 28, 19, 34, 35syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^|_ y  e.  z  ( `' F " y )  e.  J )
3722, 36eqeltrd 2555 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  e.  J )
38373exp2 1214 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> Y )  ->  (
z  e.  ( ~P B  i^i  Fin )  ->  ( x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) ) )
3938rexlimdv 2953 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  ( E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4012, 39sylbid 215 . . . . . . 7  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  -> 
( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4140com23 78 . . . . . 6  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  (
x  e.  ( fi
`  B )  -> 
( `' F "
x )  e.  J
) ) )
4241ralrimdv 2880 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
) )
43 imaeq2 5332 . . . . . . 7  |-  ( y  =  x  ->  ( `' F " y )  =  ( `' F " x ) )
4443eleq1d 2536 . . . . . 6  |-  ( y  =  x  ->  (
( `' F "
y )  e.  J  <->  ( `' F " x )  e.  J ) )
4544cbvralv 3088 . . . . 5  |-  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
)
4642, 45syl6ibr 227 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) )
479, 46impbid 191 . . 3  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4847pm5.32da 641 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
)  <->  ( F : X
--> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
494, 48bitrd 253 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   |^|cint 4282   |^|_ciin 4326   `'ccnv 4998   "cima 5002   Fun wfun 5581   -->wf 5583   ` cfv 5587  (class class class)co 6283   Fincfn 7516   ficfi 7869   topGenctg 14692   Topctop 19177  TopOnctopon 19178    Cn ccn 19507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-fin 7520  df-fi 7870  df-topgen 14698  df-top 19182  df-bases 19184  df-topon 19185  df-cn 19510
This theorem is referenced by:  xkoccn  19871  ptrescn  19891  xkoco1cn  19909  xkoco2cn  19910  xkococn  19912  xkoinjcn  19939  ordthmeolem  20053
  Copyright terms: Public domain W3C validator