MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadd23d Structured version   Unicode version

Theorem subadd23d 9856
Description: Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subadd23d  |-  ( ph  ->  ( ( A  -  B )  +  C
)  =  ( A  +  ( C  -  B ) ) )

Proof of Theorem subadd23d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subaddd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subadd23 9737 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  +  C )  =  ( A  +  ( C  -  B
) ) )
51, 2, 3, 4syl3anc 1219 1  |-  ( ph  ->  ( ( A  -  B )  +  C
)  =  ( A  +  ( C  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758  (class class class)co 6203   CCcc 9395    + caddc 9400    - cmin 9710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-ltxr 9538  df-sub 9712
This theorem is referenced by:  lincmb01cmp  11549  iccf1o  11550  ccatswrd  12472  isercoll2  13268  pythagtriplem1  14005  ovollb2lem  21113  dvfsumlem1  21641  quart1lem  22393  emcllem2  22533  basellem8  22568  lgseisenlem1  22831  ipval2  24281  lt2addrd  26214  fprodser  27629  bpoly4  28369  acongrep  29494  jm3.1lem2  29538  stoweidlem26  29992  cnambpcma  30339  numclwlk3lem3  30837  bj-bary1lem1  32963
  Copyright terms: Public domain W3C validator