MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structcnvcnv Structured version   Unicode version

Theorem structcnvcnv 14304
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 4976 . . . . . 6  |-  -.  (/)  e.  ( _V  X.  _V )
2 cnvcnv 5399 . . . . . . . 8  |-  `' `' F  =  ( F  i^i  ( _V  X.  _V ) )
3 inss2 3680 . . . . . . . 8  |-  ( F  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
42, 3eqsstri 3495 . . . . . . 7  |-  `' `' F  C_  ( _V  X.  _V )
54sseli 3461 . . . . . 6  |-  ( (/)  e.  `' `' F  ->  (/)  e.  ( _V  X.  _V )
)
61, 5mto 176 . . . . 5  |-  -.  (/)  e.  `' `' F
7 disjsn 4045 . . . . 5  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  -.  (/)  e.  `' `' F )
86, 7mpbir 209 . . . 4  |-  ( `' `' F  i^i  { (/) } )  =  (/)
9 cnvcnvss 5401 . . . . 5  |-  `' `' F  C_  F
10 reldisj 3831 . . . . 5  |-  ( `' `' F  C_  F  -> 
( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F 
\  { (/) } ) ) )
119, 10ax-mp 5 . . . 4  |-  ( ( `' `' F  i^i  { (/) } )  =  (/)  <->  `' `' F  C_  ( F  \  { (/) } ) )
128, 11mpbi 208 . . 3  |-  `' `' F  C_  ( F  \  { (/) } )
1312a1i 11 . 2  |-  ( F Struct  X  ->  `' `' F  C_  ( F  \  { (/)
} ) )
14 isstruct2 14302 . . . . . 6  |-  ( F Struct  X 
<->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) )
1514simp2bi 1004 . . . . 5  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
16 funrel 5544 . . . . 5  |-  ( Fun  ( F  \  { (/)
} )  ->  Rel  ( F  \  { (/) } ) )
1715, 16syl 16 . . . 4  |-  ( F Struct  X  ->  Rel  ( F  \  { (/) } ) )
18 dfrel2 5397 . . . 4  |-  ( Rel  ( F  \  { (/)
} )  <->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
1917, 18sylib 196 . . 3  |-  ( F Struct  X  ->  `' `' ( F  \  { (/) } )  =  ( F 
\  { (/) } ) )
20 difss 3592 . . . 4  |-  ( F 
\  { (/) } ) 
C_  F
21 cnvss 5121 . . . 4  |-  ( ( F  \  { (/) } )  C_  F  ->  `' ( F  \  { (/)
} )  C_  `' F )
22 cnvss 5121 . . . 4  |-  ( `' ( F  \  { (/)
} )  C_  `' F  ->  `' `' ( F  \  { (/) } )  C_  `' `' F )
2320, 21, 22mp2b 10 . . 3  |-  `' `' ( F  \  { (/) } )  C_  `' `' F
2419, 23syl6eqssr 3516 . 2  |-  ( F Struct  X  ->  ( F  \  { (/) } )  C_  `' `' F )
2513, 24eqssd 3482 1  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   _Vcvv 3078    \ cdif 3434    i^i cin 3436    C_ wss 3437   (/)c0 3746   {csn 3986   class class class wbr 4401    X. cxp 4947   `'ccnv 4948   dom cdm 4949   Rel wrel 4954   Fun wfun 5521   ` cfv 5527    <_ cle 9531   NNcn 10434   ...cfz 11555   Struct cstr 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-struct 14295
This theorem is referenced by:  structfun  14305  eengbas  23380  ebtwntg  23381  ecgrtg  23382  elntg  23383
  Copyright terms: Public domain W3C validator