HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Unicode version

Theorem strlem1 27145
Description: Lemma for strong state theorem: if closed subspace  A is not contained in  B, there is a unit vector  u in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1  |-  A  e. 
CH
strlem1.2  |-  B  e. 
CH
Assertion
Ref Expression
strlem1  |-  ( -.  A  C_  B  ->  E. u  e.  ( A 
\  B ) (
normh `  u )  =  1 )
Distinct variable groups:    u, A    u, B

Proof of Theorem strlem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neq0 3781 . . 3  |-  ( -.  ( A  \  B
)  =  (/)  <->  E. x  x  e.  ( A  \  B ) )
2 ssdif0 3871 . . 3  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
31, 2xchnxbir 309 . 2  |-  ( -.  A  C_  B  <->  E. x  x  e.  ( A  \  B ) )
4 eldifi 3611 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
5 strlem1.1 . . . . . . . . . . . 12  |-  A  e. 
CH
65cheli 26126 . . . . . . . . . . 11  |-  ( x  e.  A  ->  x  e.  ~H )
7 normcl 26018 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
84, 6, 73syl 20 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  e.  RR )
9 strlem1.2 . . . . . . . . . . . . . . . 16  |-  B  e. 
CH
10 ch0 26122 . . . . . . . . . . . . . . . 16  |-  ( B  e.  CH  ->  0h  e.  B )
119, 10ax-mp 5 . . . . . . . . . . . . . . 15  |-  0h  e.  B
12 eldifn 3612 . . . . . . . . . . . . . . 15  |-  ( 0h  e.  ( A  \  B )  ->  -.  0h  e.  B )
1311, 12mt2 179 . . . . . . . . . . . . . 14  |-  -.  0h  e.  ( A  \  B
)
14 eleq1 2515 . . . . . . . . . . . . . 14  |-  ( x  =  0h  ->  (
x  e.  ( A 
\  B )  <->  0h  e.  ( A  \  B ) ) )
1513, 14mtbiri 303 . . . . . . . . . . . . 13  |-  ( x  =  0h  ->  -.  x  e.  ( A  \  B ) )
1615con2i 120 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  -.  x  =  0h )
17 norm-i 26022 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
184, 6, 173syl 20 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
1916, 18mtbird 301 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  -.  ( normh `  x )  =  0 )
2019neqned 2646 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  =/=  0 )
218, 20rereccld 10378 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
1  /  ( normh `  x ) )  e.  RR )
2221recnd 9625 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  (
1  /  ( normh `  x ) )  e.  CC )
235chshii 26121 . . . . . . . . . 10  |-  A  e.  SH
24 shmulcl 26111 . . . . . . . . . 10  |-  ( ( A  e.  SH  /\  ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  A )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  A )
2523, 24mp3an1 1312 . . . . . . . . 9  |-  ( ( ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  A )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  A )
2625ex 434 . . . . . . . 8  |-  ( ( 1  /  ( normh `  x ) )  e.  CC  ->  ( x  e.  A  ->  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  A
) )
2722, 26syl 16 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  (
x  e.  A  -> 
( ( 1  / 
( normh `  x )
)  .h  x )  e.  A ) )
288recnd 9625 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  e.  CC )
299chshii 26121 . . . . . . . . . . . 12  |-  B  e.  SH
30 shmulcl 26111 . . . . . . . . . . . 12  |-  ( ( B  e.  SH  /\  ( normh `  x )  e.  CC  /\  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  B
)  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B )
3129, 30mp3an1 1312 . . . . . . . . . . 11  |-  ( ( ( normh `  x )  e.  CC  /\  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  B
)  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B )
3231ex 434 . . . . . . . . . 10  |-  ( (
normh `  x )  e.  CC  ->  ( (
( 1  /  ( normh `  x ) )  .h  x )  e.  B  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B ) )
3328, 32syl 16 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
( ( 1  / 
( normh `  x )
)  .h  x )  e.  B  ->  (
( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B ) )
3428, 20recidd 10322 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  x.  ( 1  /  ( normh `  x ) ) )  =  1 )
3534oveq1d 6296 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  x.  ( 1  /  ( normh `  x
) ) )  .h  x )  =  ( 1  .h  x ) )
364, 6syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  x  e.  ~H )
37 ax-hvmulass 25900 . . . . . . . . . . . 12  |-  ( ( ( normh `  x )  e.  CC  /\  ( 1  /  ( normh `  x
) )  e.  CC  /\  x  e.  ~H )  ->  ( ( ( normh `  x )  x.  (
1  /  ( normh `  x ) ) )  .h  x )  =  ( ( normh `  x
)  .h  ( ( 1  /  ( normh `  x ) )  .h  x ) ) )
3828, 22, 36, 37syl3anc 1229 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  x.  ( 1  /  ( normh `  x
) ) )  .h  x )  =  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) ) )
39 ax-hvmulid 25899 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  x )
404, 6, 393syl 20 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
1  .h  x )  =  x )
4135, 38, 403eqtr3d 2492 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  =  x )
4241eleq1d 2512 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  .h  ( ( 1  /  ( normh `  x ) )  .h  x ) )  e.  B  <->  x  e.  B
) )
4333, 42sylibd 214 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  (
( ( 1  / 
( normh `  x )
)  .h  x )  e.  B  ->  x  e.  B ) )
4443con3d 133 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  ( -.  x  e.  B  ->  -.  ( ( 1  /  ( normh `  x
) )  .h  x
)  e.  B ) )
4527, 44anim12d 563 . . . . . 6  |-  ( x  e.  ( A  \  B )  ->  (
( x  e.  A  /\  -.  x  e.  B
)  ->  ( (
( 1  /  ( normh `  x ) )  .h  x )  e.  A  /\  -.  (
( 1  /  ( normh `  x ) )  .h  x )  e.  B ) ) )
46 eldif 3471 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
47 eldif 3471 . . . . . 6  |-  ( ( ( 1  /  ( normh `  x ) )  .h  x )  e.  ( A  \  B
)  <->  ( ( ( 1  /  ( normh `  x ) )  .h  x )  e.  A  /\  -.  ( ( 1  /  ( normh `  x
) )  .h  x
)  e.  B ) )
4845, 46, 473imtr4g 270 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
x  e.  ( A 
\  B )  -> 
( ( 1  / 
( normh `  x )
)  .h  x )  e.  ( A  \  B ) ) )
4948pm2.43i 47 . . . 4  |-  ( x  e.  ( A  \  B )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  ( A  \  B
) )
50 norm-iii 26033 . . . . . 6  |-  ( ( ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  ( ( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) ) )
5122, 36, 50syl2anc 661 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  ( ( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) ) )
5215necon2ai 2678 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  x  =/=  0h )
53 normgt0 26020 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
x  =/=  0h  <->  0  <  (
normh `  x ) ) )
544, 6, 533syl 20 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
x  =/=  0h  <->  0  <  (
normh `  x ) ) )
5552, 54mpbid 210 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  0  <  ( normh `  x )
)
56 1re 9598 . . . . . . . . 9  |-  1  e.  RR
57 0le1 10083 . . . . . . . . 9  |-  0  <_  1
58 divge0 10418 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( normh `  x )  e.  RR  /\  0  <  ( normh `  x ) ) )  ->  0  <_  (
1  /  ( normh `  x ) ) )
5956, 57, 58mpanl12 682 . . . . . . . 8  |-  ( ( ( normh `  x )  e.  RR  /\  0  < 
( normh `  x )
)  ->  0  <_  ( 1  /  ( normh `  x ) ) )
608, 55, 59syl2anc 661 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  0  <_  ( 1  /  ( normh `  x ) ) )
6121, 60absidd 13235 . . . . . 6  |-  ( x  e.  ( A  \  B )  ->  ( abs `  ( 1  / 
( normh `  x )
) )  =  ( 1  /  ( normh `  x ) ) )
6261oveq1d 6296 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) )  =  ( ( 1  /  ( normh `  x ) )  x.  ( normh `  x
) ) )
6328, 20recid2d 10323 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
( 1  /  ( normh `  x ) )  x.  ( normh `  x
) )  =  1 )
6451, 62, 633eqtrd 2488 . . . 4  |-  ( x  e.  ( A  \  B )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  1 )
65 fveq2 5856 . . . . . 6  |-  ( u  =  ( ( 1  /  ( normh `  x
) )  .h  x
)  ->  ( normh `  u )  =  (
normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) ) )
6665eqeq1d 2445 . . . . 5  |-  ( u  =  ( ( 1  /  ( normh `  x
) )  .h  x
)  ->  ( ( normh `  u )  =  1  <->  ( normh `  (
( 1  /  ( normh `  x ) )  .h  x ) )  =  1 ) )
6766rspcev 3196 . . . 4  |-  ( ( ( ( 1  / 
( normh `  x )
)  .h  x )  e.  ( A  \  B )  /\  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  1 )  ->  E. u  e.  ( A  \  B
) ( normh `  u
)  =  1 )
6849, 64, 67syl2anc 661 . . 3  |-  ( x  e.  ( A  \  B )  ->  E. u  e.  ( A  \  B
) ( normh `  u
)  =  1 )
6968exlimiv 1709 . 2  |-  ( E. x  x  e.  ( A  \  B )  ->  E. u  e.  ( A  \  B ) ( normh `  u )  =  1 )
703, 69sylbi 195 1  |-  ( -.  A  C_  B  ->  E. u  e.  ( A 
\  B ) (
normh `  u )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   E.wrex 2794    \ cdif 3458    C_ wss 3461   (/)c0 3770   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    x. cmul 9500    < clt 9631    <_ cle 9632    / cdiv 10213   abscabs 13048   ~Hchil 25812    .h csm 25814   normhcno 25816   0hc0v 25817   SHcsh 25821   CHcch 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-hilex 25892  ax-hfvadd 25893  ax-hv0cl 25896  ax-hfvmul 25898  ax-hvmulid 25899  ax-hvmulass 25900  ax-hvmul0 25903  ax-hfi 25972  ax-his1 25975  ax-his3 25977  ax-his4 25978
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11092  df-rp 11231  df-seq 12089  df-exp 12148  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-hnorm 25861  df-sh 26100  df-ch 26115
This theorem is referenced by:  stri  27152  hstri  27160
  Copyright terms: Public domain W3C validator