Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem8 Structured version   Visualization version   Unicode version

Theorem stoweidlem8 37862
Description: Lemma for stoweid 37919: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem8.1  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem8.2  |-  F/_ t F
stoweidlem8.3  |-  F/_ t G
Assertion
Ref Expression
stoweidlem8  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem8
StepHypRef Expression
1 simp3 1009 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2516 . . . . 5  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1344 . . . 4  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem8.3 . . . . . . 7  |-  F/_ t G
54nfeq2 2606 . . . . . 6  |-  F/ t  g  =  G
6 fveq1 5862 . . . . . . . 8  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
76oveq2d 6304 . . . . . . 7  |-  ( g  =  G  ->  (
( F `  t
)  +  ( g `
 t ) )  =  ( ( F `
 t )  +  ( G `  t
) ) )
87adantr 467 . . . . . 6  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  +  ( g `  t ) )  =  ( ( F `  t )  +  ( G `  t ) ) )
95, 8mpteq2da 4487 . . . . 5  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) ) )
109eleq1d 2512 . . . 4  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  +  ( G `
 t ) ) )  e.  A ) )
113, 10imbi12d 322 . . 3  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A
) ) )
12 simp2 1008 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
13 eleq1 2516 . . . . . . 7  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
14133anbi2d 1343 . . . . . 6  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
15 stoweidlem8.2 . . . . . . . . 9  |-  F/_ t F
1615nfeq2 2606 . . . . . . . 8  |-  F/ t  f  =  F
17 fveq1 5862 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1817oveq1d 6303 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( F `
 t )  +  ( g `  t
) ) )
1918adantr 467 . . . . . . . 8  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  +  ( g `  t ) )  =  ( ( F `  t )  +  ( g `  t ) ) )
2016, 19mpteq2da 4487 . . . . . . 7  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) ) )
2120eleq1d 2512 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  e.  A ) )
2214, 21imbi12d 322 . . . . 5  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A
) ) )
23 stoweidlem8.1 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
2422, 23vtoclg 3106 . . . 4  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  e.  A ) )
2512, 24mpcom 37 . . 3  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A )
2611, 25vtoclg 3106 . 2  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( G `
 t ) ) )  e.  A ) )
271, 26mpcom 37 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 984    = wceq 1443    e. wcel 1886   F/_wnfc 2578    |-> cmpt 4460   ` cfv 5581  (class class class)co 6288    + caddc 9539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-iota 5545  df-fv 5589  df-ov 6291
This theorem is referenced by:  stoweidlem20  37874  stoweidlem21  37875  stoweidlem22  37876  stoweidlem23  37877
  Copyright terms: Public domain W3C validator