Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Unicode version

Theorem stoweidlem7 31992
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on  T  \  U, and qn > 1 - ε on  V. Here it is proven that, for  n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable  A is used to represent (k*δ) in the paper, and  B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
stoweidlem7.2  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
stoweidlem7.3  |-  ( ph  ->  A  e.  RR )
stoweidlem7.4  |-  ( ph  ->  1  <  A )
stoweidlem7.5  |-  ( ph  ->  B  e.  RR+ )
stoweidlem7.6  |-  ( ph  ->  B  <  1 )
stoweidlem7.7  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweidlem7  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Distinct variable groups:    i, n, A    B, i, n    i, E, n    ph, i, n   
n, F    n, G
Allowed substitution hints:    F( i)    G( i)

Proof of Theorem stoweidlem7
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 11141 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10916 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
3 stoweidlem7.7 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
4 stoweidlem7.2 . . . . . . 7  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
54a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  G  =  ( i  e.  NN0  |->  ( B ^ i ) ) )
6 oveq2 6304 . . . . . . 7  |-  ( i  =  k  ->  ( B ^ i )  =  ( B ^ k
) )
76adantl 466 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( B ^ i
)  =  ( B ^ k ) )
8 nnnn0 10823 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  NN0 )
98adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
10 stoweidlem7.5 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR+ )
1110rpcnd 11283 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1211adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
1312, 9expcld 12313 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( B ^ k )  e.  CC )
145, 7, 9, 13fvmptd 5961 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( B ^ k
) )
15 1red 9628 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
1615renegcld 10007 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
17 0red 9614 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
1810rpred 11281 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
19 neg1lt0 10663 . . . . . . . . . 10  |-  -u 1  <  0
2019a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  <  0
)
2110rpgt0d 11284 . . . . . . . . 9  |-  ( ph  ->  0  <  B )
2216, 17, 18, 20, 21lttrd 9760 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  B
)
23 stoweidlem7.6 . . . . . . . 8  |-  ( ph  ->  B  <  1 )
2418, 15absltd 13273 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  B
)  <  1  <->  ( -u 1  <  B  /\  B  <  1 ) ) )
2522, 23, 24mpbir2and 922 . . . . . . 7  |-  ( ph  ->  ( abs `  B
)  <  1 )
2611, 25expcnv 13687 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( B ^ i ) )  ~~>  0 )
274, 26syl5eqbr 4489 . . . . 5  |-  ( ph  ->  G  ~~>  0 )
281, 2, 3, 14, 27climi 13345 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )
29 r19.26 2984 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  <->  ( A. k  e.  ( ZZ>= `  n ) ( B ^ k )  e.  CC  /\  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E ) )
3029simprbi 464 . . . . . . . . . . . . 13  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E )
3130ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E )
32 oveq2 6304 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  ( B ^ k )  =  ( B ^ i
) )
3332oveq1d 6311 . . . . . . . . . . . . . . 15  |-  ( k  =  i  ->  (
( B ^ k
)  -  0 )  =  ( ( B ^ i )  - 
0 ) )
3433fveq2d 5876 . . . . . . . . . . . . . 14  |-  ( k  =  i  ->  ( abs `  ( ( B ^ k )  - 
0 ) )  =  ( abs `  (
( B ^ i
)  -  0 ) ) )
3534breq1d 4466 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (
( abs `  (
( B ^ k
)  -  0 ) )  <  E  <->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
) )
3635rspccva 3209 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E  /\  i  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
)
3731, 36sylancom 667 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  <  E )
38 simplll 759 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ph )
3938, 10syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR+ )
4039rpred 11281 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR )
41 simpllr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN )
42 nnnn0 10823 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  NN0 )
4341, 42syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN0 )
44 eluznn0 11176 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN0 )
4543, 44sylancom 667 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN0 )
4640, 45reexpcld 12330 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  e.  RR )
47 rpre 11251 . . . . . . . . . . . . 13  |-  ( E  e.  RR+  ->  E  e.  RR )
4838, 3, 473syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  E  e.  RR )
49 recn 9599 . . . . . . . . . . . . . . . . 17  |-  ( ( B ^ i )  e.  RR  ->  ( B ^ i )  e.  CC )
5049subid1d 9939 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ i )  e.  RR  ->  (
( B ^ i
)  -  0 )  =  ( B ^
i ) )
5150adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( B ^
i )  -  0 )  =  ( B ^ i ) )
5251fveq2d 5876 . . . . . . . . . . . . . 14  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  =  ( abs `  ( B ^ i
) ) )
5352breq1d 4466 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( abs `  ( B ^ i
) )  <  E
) )
54 abslt 13159 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  ( B ^ i ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
5553, 54bitrd 253 . . . . . . . . . . . 12  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
5646, 48, 55syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( abs `  ( ( B ^
i )  -  0 ) )  <  E  <->  (
-u E  <  ( B ^ i )  /\  ( B ^ i )  <  E ) ) )
5737, 56mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) )
5857simprd 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  <  E
)
59 eluznn 11177 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN )
6041, 59sylancom 667 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN )
6118adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  B  e.  RR )
62 nnnn0 10823 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  i  e.  NN0 )
6362adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  i  e. 
NN0 )
6461, 63reexpcld 12330 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  ( B ^ i )  e.  RR )
653rpred 11281 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  RR )
6665adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  E  e.  RR )
67 1red 9628 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  1  e.  RR )
6864, 66, 67ltsub2d 10183 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( B ^ i )  <  E  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
6938, 60, 68syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( B ^ i )  < 
E  <->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) ) )
7058, 69mpbid 210 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) )
7170ralrimiva 2871 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
7232oveq2d 6312 . . . . . . . . 9  |-  ( k  =  i  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ i
) ) )
7372breq2d 4468 . . . . . . . 8  |-  ( k  =  i  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
7473cbvralv 3084 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) )  <->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
7571, 74sylibr 212 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. k  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ k
) ) )
7675ex 434 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) ) ) )
7776reximdva 2932 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( B ^
k )  e.  CC  /\  ( abs `  (
( B ^ k
)  -  0 ) )  <  E )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) ) )
7828, 77mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) )
79 stoweidlem7.1 . . . . . . 7  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
8079a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) ) )
81 oveq2 6304 . . . . . . 7  |-  ( i  =  k  ->  (
( 1  /  A
) ^ i )  =  ( ( 1  /  A ) ^
k ) )
8281adantl 466 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( ( 1  /  A ) ^ i
)  =  ( ( 1  /  A ) ^ k ) )
83 stoweidlem7.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
8483recnd 9639 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
85 0lt1 10096 . . . . . . . . . . . 12  |-  0  <  1
8685a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  1 )
87 stoweidlem7.4 . . . . . . . . . . 11  |-  ( ph  ->  1  <  A )
8817, 15, 83, 86, 87lttrd 9760 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
8988gt0ne0d 10138 . . . . . . . . 9  |-  ( ph  ->  A  =/=  0 )
9084, 89reccld 10334 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
9190adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  CC )
9291, 9expcld 12313 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  CC )
9380, 82, 9, 92fvmptd 5961 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( 1  /  A ) ^ k
) )
9483, 89rereccld 10392 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
9583, 88recgt0d 10500 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 1  /  A ) )
9616, 17, 94, 20, 95lttrd 9760 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  (
1  /  A ) )
97 ltdiv23 10456 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( A  e.  RR  /\  0  <  A )  /\  ( 1  e.  RR  /\  0  <  1 ) )  -> 
( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
9815, 83, 88, 15, 86, 97syl122anc 1237 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
99 1cnd 9629 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
10099div1d 10333 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  1
)  =  1 )
101100breq1d 4466 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
1 )  <  A  <->  1  <  A ) )
10298, 101bitrd 253 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  1  <  A ) )
10387, 102mpbird 232 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  <  1 )
10494, 15absltd 13273 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
1  /  A ) )  <  1  <->  ( -u 1  <  ( 1  /  A )  /\  ( 1  /  A
)  <  1 ) ) )
10596, 103, 104mpbir2and 922 . . . . . . 7  |-  ( ph  ->  ( abs `  (
1  /  A ) )  <  1 )
10690, 105expcnv 13687 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )  ~~>  0 )
10779, 106syl5eqbr 4489 . . . . 5  |-  ( ph  ->  F  ~~>  0 )
1081, 2, 3, 93, 107climi2 13346 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E
)
109 simpll 753 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ph )
110 uznnssnn 11153 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( ZZ>=
`  n )  C_  NN )
111110ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ZZ>= `  n )  C_  NN )
112 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ( ZZ>= `  n )
)
113111, 112sseldd 3500 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
11492subid1d 9939 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  A
) ^ k )  -  0 )  =  ( ( 1  /  A ) ^ k
) )
115114fveq2d 5876 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( abs `  ( ( 1  /  A ) ^ k ) ) )
11694adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  RR )
117116, 9reexpcld 12330 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  RR )
11817, 94, 95ltled 9750 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  ( 1  /  A ) )
119118adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  A
) )
120116, 9, 119expge0d 12331 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  /  A ) ^ k
) )
121117, 120absidd 13266 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( 1  /  A ) ^ k
) )  =  ( ( 1  /  A
) ^ k ) )
122115, 121eqtrd 2498 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( ( 1  /  A
) ^ k ) )
123122breq1d 4466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  <->  ( (
1  /  A ) ^ k )  < 
E ) )
124123biimpd 207 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  ->  (
( 1  /  A
) ^ k )  <  E ) )
125109, 113, 124syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( ( 1  /  A ) ^ k )  - 
0 ) )  < 
E  ->  ( (
1  /  A ) ^ k )  < 
E ) )
126125ralimdva 2865 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  /  A
) ^ k )  <  E ) )
127126reximdva 2932 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( ( 1  /  A ) ^ k
)  -  0 ) )  <  E  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
128108, 127mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E )
1291rexanuz2 13194 . . 3  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  <->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
13078, 128, 129sylanbrc 664 . 2  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )
131 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )
)
132 nnz 10907 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  ZZ )
133 uzid 11120 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
134132, 133syl 16 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  n )
)
135134ad2antlr 726 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  n  e.  (
ZZ>= `  n ) )
136 oveq2 6304 . . . . . . . . . 10  |-  ( k  =  n  ->  ( B ^ k )  =  ( B ^ n
) )
137136oveq2d 6312 . . . . . . . . 9  |-  ( k  =  n  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ n
) ) )
138137breq2d 4468 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ n ) ) ) )
139 oveq2 6304 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  A
) ^ k )  =  ( ( 1  /  A ) ^
n ) )
140139breq1d 4466 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( 1  /  A ) ^ k
)  <  E  <->  ( (
1  /  A ) ^ n )  < 
E ) )
141138, 140anbi12d 710 . . . . . . 7  |-  ( k  =  n  ->  (
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  <->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) ) )
142141rspccva 3209 . . . . . 6  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )  /\  n  e.  ( ZZ>=
`  n ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
143131, 135, 142syl2anc 661 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
144 1cnd 9629 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  1  e.  CC )
14584, 89jca 532 . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
146145adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
14742adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
148 expdiv 12219 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  n  e.  NN0 )  ->  ( ( 1  /  A ) ^
n )  =  ( ( 1 ^ n
)  /  ( A ^ n ) ) )
149144, 146, 147, 148syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( ( 1 ^ n )  /  ( A ^ n ) ) )
150132adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
151 1exp 12198 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
152150, 151syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ^ n )  =  1 )
153152oveq1d 6311 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1 ^ n )  /  ( A ^
n ) )  =  ( 1  /  ( A ^ n ) ) )
154149, 153eqtrd 2498 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( 1  /  ( A ^ n ) ) )
155154breq1d 4466 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 1  /  A
) ^ n )  <  E  <->  ( 1  /  ( A ^
n ) )  < 
E ) )
156155adantr 465 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  /  A ) ^ n )  < 
E  <->  ( 1  / 
( A ^ n
) )  <  E
) )
157156anbi2d 703 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
( 1  /  A
) ^ n )  <  E )  <->  ( (
1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
1  /  ( A ^ n ) )  <  E ) ) )
158143, 157mpbid 210 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
159158ex 434 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  -> 
( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
160159reximdva 2932 . 2  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  ->  E. n  e.  NN  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
161130, 160mpd 15 1  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    < clt 9645    <_ cle 9646    - cmin 9824   -ucneg 9825    / cdiv 10227   NNcn 10556   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ^cexp 12169   abscabs 13079    ~~> cli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fl 11932  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324
This theorem is referenced by:  stoweidlem49  32034
  Copyright terms: Public domain W3C validator