Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Unicode version

Theorem stoweidlem62 27472
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem62.1  |-  F/_ t F
stoweidlem62.2  |-  F/ f
ph
stoweidlem62.3  |-  F/ t
ph
stoweidlem62.4  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
stoweidlem62.5  |-  K  =  ( topGen `  ran  (,) )
stoweidlem62.6  |-  T  = 
U. J
stoweidlem62.7  |-  ( ph  ->  J  e.  Comp )
stoweidlem62.8  |-  C  =  ( J  Cn  K
)
stoweidlem62.9  |-  ( ph  ->  A  C_  C )
stoweidlem62.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem62.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem62.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem62.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem62.14  |-  ( ph  ->  F  e.  C )
stoweidlem62.15  |-  ( ph  ->  E  e.  RR+ )
stoweidlem62.16  |-  ( ph  ->  T  =/=  (/) )
stoweidlem62.17  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem62  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, A    f, q,
r, x, t, A   
f, E, g, t   
f, F, g    f, H, g    f, J, r, t    T, f, g, t    ph, f, g    E, q, r, x    H, q, r, x    T, q, r, x    ph, q,
r, x    t, K    x, F
Allowed substitution hints:    ph( t)    C( x, t, f, g, r, q)    F( t, r, q)    H( t)    J( x, g, q)    K( x, f, g, r, q)

Proof of Theorem stoweidlem62
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
2 nfmpt1 4232 . . . . 5  |-  F/_ t
( t  e.  T  |->  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
31, 2nfcxfr 2513 . . . 4  |-  F/_ t H
4 stoweidlem62.3 . . . 4  |-  F/ t
ph
5 stoweidlem62.5 . . . 4  |-  K  =  ( topGen `  ran  (,) )
6 stoweidlem62.7 . . . 4  |-  ( ph  ->  J  e.  Comp )
7 stoweidlem62.6 . . . 4  |-  T  = 
U. J
8 stoweidlem62.16 . . . 4  |-  ( ph  ->  T  =/=  (/) )
9 stoweidlem62.8 . . . 4  |-  C  =  ( J  Cn  K
)
10 stoweidlem62.9 . . . 4  |-  ( ph  ->  A  C_  C )
11 eleq1 2440 . . . . . . 7  |-  ( g  =  h  ->  (
g  e.  A  <->  h  e.  A ) )
12113anbi3d 1260 . . . . . 6  |-  ( g  =  h  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  f  e.  A  /\  h  e.  A )
) )
13 fveq1 5660 . . . . . . . . 9  |-  ( g  =  h  ->  (
g `  t )  =  ( h `  t ) )
1413oveq2d 6029 . . . . . . . 8  |-  ( g  =  h  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( f `
 t )  +  ( h `  t
) ) )
1514mpteq2dv 4230 . . . . . . 7  |-  ( g  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) ) )
1615eleq1d 2446 . . . . . 6  |-  ( g  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( f `  t
)  +  ( h `
 t ) ) )  e.  A ) )
1712, 16imbi12d 312 . . . . 5  |-  ( g  =  h  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  f  e.  A  /\  h  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) )  e.  A
) ) )
18 stoweidlem62.10 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1917, 18chvarv 2039 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  h  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) )  e.  A )
2013oveq2d 6029 . . . . . . . 8  |-  ( g  =  h  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( f `
 t )  x.  ( h `  t
) ) )
2120mpteq2dv 4230 . . . . . . 7  |-  ( g  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( f `  t )  x.  ( h `  t ) ) ) )
2221eleq1d 2446 . . . . . 6  |-  ( g  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( h `
 t ) ) )  e.  A ) )
2312, 22imbi12d 312 . . . . 5  |-  ( g  =  h  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  f  e.  A  /\  h  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
h `  t )
) )  e.  A
) ) )
24 stoweidlem62.11 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2523, 24chvarv 2039 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  h  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( h `  t ) ) )  e.  A )
26 stoweidlem62.12 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
27 stoweidlem62.13 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
28 stoweidlem62.1 . . . . . 6  |-  F/_ t F
2928nfrn 5045 . . . . . . 7  |-  F/_ t ran  F
30 nfcv 2516 . . . . . . 7  |-  F/_ t RR
31 nfcv 2516 . . . . . . 7  |-  F/_ t `'  <
3229, 30, 31nfsup 7382 . . . . . 6  |-  F/_ t sup ( ran  F ,  RR ,  `'  <  )
33 eqid 2380 . . . . . 6  |-  ( T  X.  { -u sup ( ran  F ,  RR ,  `'  <  ) } )  =  ( T  X.  { -u sup ( ran  F ,  RR ,  `'  <  ) } )
34 cmptop 17373 . . . . . . 7  |-  ( J  e.  Comp  ->  J  e. 
Top )
356, 34syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
36 stoweidlem62.14 . . . . . 6  |-  ( ph  ->  F  e.  C )
3736, 9syl6eleq 2470 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3828, 4, 7, 5, 6, 37, 8stoweidlem29 27439 . . . . . . 7  |-  ( ph  ->  ( sup ( ran 
F ,  RR ,  `'  <  )  e.  ran  F  /\  sup ( ran 
F ,  RR ,  `'  <  )  e.  RR  /\ 
A. t  e.  T  sup ( ran  F ,  RR ,  `'  <  )  <_  ( F `  t ) ) )
3938simp2d 970 . . . . . 6  |-  ( ph  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 27457 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  e.  C )
411, 40syl5eqel 2464 . . . 4  |-  ( ph  ->  H  e.  C )
4238simp3d 971 . . . . . . . . 9  |-  ( ph  ->  A. t  e.  T  sup ( ran  F ,  RR ,  `'  <  )  <_  ( F `  t ) )
4342r19.21bi 2740 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  sup ( ran  F ,  RR ,  `'  <  )  <_ 
( F `  t
) )
445, 7, 9, 36fcnre 27357 . . . . . . . . . 10  |-  ( ph  ->  F : T --> RR )
4544fnvinran 27346 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
4639adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
4745, 46subge0d 9541 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <_  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <->  sup ( ran  F ,  RR ,  `'  <  )  <_  ( F `  t ) ) )
4843, 47mpbird 224 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  0  <_  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
49 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
5045, 46resubcld 9390 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR )
511fvmpt2 5744 . . . . . . . 8  |-  ( ( t  e.  T  /\  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR )  -> 
( H `  t
)  =  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )
5249, 50, 51syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  ( ( F `
 t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
5348, 52breqtrrd 4172 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  0  <_  ( H `  t
) )
5453ex 424 . . . . 5  |-  ( ph  ->  ( t  e.  T  ->  0  <_  ( H `  t ) ) )
554, 54ralrimi 2723 . . . 4  |-  ( ph  ->  A. t  e.  T 
0  <_  ( H `  t ) )
56 stoweidlem62.15 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
5756rphalfcld 10585 . . . 4  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
5856rpred 10573 . . . . . 6  |-  ( ph  ->  E  e.  RR )
5958rehalfcld 10139 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
60 3re 9996 . . . . . . 7  |-  3  e.  RR
61 3ne0 10010 . . . . . . 7  |-  3  =/=  0
6260, 61rereccli 9704 . . . . . 6  |-  ( 1  /  3 )  e.  RR
6362a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
64 rphalflt 10563 . . . . . 6  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
6556, 64syl 16 . . . . 5  |-  ( ph  ->  ( E  /  2
)  <  E )
66 stoweidlem62.17 . . . . 5  |-  ( ph  ->  E  <  ( 1  /  3 ) )
6759, 58, 63, 65, 66lttrd 9156 . . . 4  |-  ( ph  ->  ( E  /  2
)  <  ( 1  /  3 ) )
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 27471 . . 3  |-  ( ph  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  ( 2  x.  ( E  /  2
) ) )
69 nfra1 2692 . . . . . . 7  |-  F/ t A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  ( 2  x.  ( E  /  2
) )
704, 69nfan 1836 . . . . . 6  |-  F/ t ( ph  /\  A. t  e.  T  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  (
2  x.  ( E  /  2 ) ) )
71 rsp 2702 . . . . . . 7  |-  ( A. t  e.  T  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  (
2  x.  ( E  /  2 ) )  ->  ( t  e.  T  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) ) )
7256rpcnd 10575 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
73 2cn 9995 . . . . . . . . . . 11  |-  2  e.  CC
7473a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
75 2ne0 10008 . . . . . . . . . . 11  |-  2  =/=  0
7675a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  =/=  0 )
7772, 74, 76divcan2d 9717 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( E  /  2 ) )  =  E )
7877breq2d 4158 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  <->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )
7978biimpd 199 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  -> 
( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  E ) )
8071, 79sylan9r 640 . . . . . 6  |-  ( (
ph  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) )  ->  ( t  e.  T  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )
8170, 80ralrimi 2723 . . . . 5  |-  ( (
ph  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
8281ex 424 . . . 4  |-  ( ph  ->  ( A. t  e.  T  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
8382reximdv 2753 . . 3  |-  ( ph  ->  ( E. h  e.  A  A. t  e.  T  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
8468, 83mpd 15 . 2  |-  ( ph  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E )
85 nfmpt1 4232 . . 3  |-  F/_ t
( t  e.  T  |->  ( ( h `  t )  +  sup ( ran  F ,  RR ,  `'  <  ) ) )
86 nfcv 2516 . . 3  |-  F/_ t
h
87 nfv 1626 . . . . 5  |-  F/ t  h  e.  A
88 nfra1 2692 . . . . 5  |-  F/ t A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E
8987, 88nfan 1836 . . . 4  |-  F/ t ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E )
904, 89nfan 1836 . . 3  |-  F/ t ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
91 eqid 2380 . . 3  |-  ( t  e.  T  |->  ( ( h `  t )  +  sup ( ran 
F ,  RR ,  `'  <  ) ) )  =  ( t  e.  T  |->  ( ( h `
 t )  +  sup ( ran  F ,  RR ,  `'  <  ) ) )
9244adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  F : T --> RR )
9339adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
94183adant1r 1177 . . 3  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
9526adantlr 696 . . 3  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
96 stoweidlem62.2 . . . . 5  |-  F/ f
ph
9710sseld 3283 . . . . . . . 8  |-  ( ph  ->  ( f  e.  A  ->  f  e.  C ) )
989eleq2i 2444 . . . . . . . 8  |-  ( f  e.  C  <->  f  e.  ( J  Cn  K
) )
9997, 98syl6ib 218 . . . . . . 7  |-  ( ph  ->  ( f  e.  A  ->  f  e.  ( J  Cn  K ) ) )
100 eqid 2380 . . . . . . . 8  |-  U. J  =  U. J
101 uniretop 18660 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
1025unieqi 3960 . . . . . . . . 9  |-  U. K  =  U. ( topGen `  ran  (,) )
103101, 102eqtr4i 2403 . . . . . . . 8  |-  RR  =  U. K
104100, 103cnf 17225 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> RR )
10599, 104syl6 31 . . . . . 6  |-  ( ph  ->  ( f  e.  A  ->  f : U. J --> RR ) )
106 feq2 5510 . . . . . . 7  |-  ( T  =  U. J  -> 
( f : T --> RR 
<->  f : U. J --> RR ) )
1077, 106mp1i 12 . . . . . 6  |-  ( ph  ->  ( f : T --> RR 
<->  f : U. J --> RR ) )
108105, 107sylibrd 226 . . . . 5  |-  ( ph  ->  ( f  e.  A  ->  f : T --> RR ) )
10996, 108ralrimi 2723 . . . 4  |-  ( ph  ->  A. f  e.  A  f : T --> RR )
110109adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  A. f  e.  A  f : T
--> RR )
111 simprl 733 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  h  e.  A )
11252eqcomd 2385 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  -  sup ( ran  F ,  RR ,  `'  <  ) )  =  ( H `  t
) )
113112oveq2d 6029 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( h `  t
)  -  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )  =  ( ( h `
 t )  -  ( H `  t ) ) )
114113fveq2d 5665 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( abs `  ( ( h `
 t )  -  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) ) )  =  ( abs `  ( ( h `  t )  -  ( H `  t ) ) ) )
115114adantlr 696 . . . . . 6  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  (
( F `  t
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) ) )  =  ( abs `  ( ( h `  t )  -  ( H `  t )
) ) )
116 simplrr 738 . . . . . . 7  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
117 rsp 2702 . . . . . . . 8  |-  ( A. t  e.  T  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  E  ->  ( t  e.  T  ->  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  E ) )
118117imp 419 . . . . . . 7  |-  ( ( A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E  /\  t  e.  T )  ->  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  E
)
119116, 118sylancom 649 . . . . . 6  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
120115, 119eqbrtrd 4166 . . . . 5  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  (
( F `  t
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) ) )  <  E )
121120ex 424 . . . 4  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  (
t  e.  T  -> 
( abs `  (
( h `  t
)  -  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) ) )  <  E ) )
12290, 121ralrimi 2723 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  (
( F `  t
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) ) )  <  E )
12385, 86, 32, 90, 91, 92, 93, 94, 95, 110, 111, 122stoweidlem21 27431 . 2  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
)
12484, 123rexlimddv 2770 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2503    =/= wne 2543   A.wral 2642   E.wrex 2643    C_ wss 3256   (/)c0 3564   {csn 3750   U.cuni 3950   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   ran crn 4812   -->wf 5383   ` cfv 5387  (class class class)co 6013   supcsup 7373   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    < clt 9046    <_ cle 9047    - cmin 9216   -ucneg 9217    / cdiv 9602   2c2 9974   3c3 9975   RR+crp 10537   (,)cioo 10841   abscabs 11959   topGenctg 13585   Topctop 16874    Cn ccn 17203   Compccmp 17364
This theorem is referenced by:  stoweid  27473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ioc 10846  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-submnd 14659  df-mulg 14735  df-cntz 15036  df-cmn 15334  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-cn 17206  df-cnp 17207  df-cmp 17365  df-tx 17508  df-hmeo 17701  df-xms 18252  df-ms 18253  df-tms 18254
  Copyright terms: Public domain W3C validator