Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Unicode version

Theorem stoweidlem61 27471
Description: This lemma proves that there exists a function  g as in the proof in [BrosowskiDeutsh] p. 92:  g is in the subalgebra, and for all  t in  T, abs( f(t) - g(t) ) < 2*ε. Here  F is used to represent f in the paper, and  E is used to represent ε. For this lemma there's the further assumption that the function  F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1  |-  F/_ t F
stoweidlem61.2  |-  F/ t
ph
stoweidlem61.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem61.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem61.5  |-  T  = 
U. J
stoweidlem61.6  |-  ( ph  ->  T  =/=  (/) )
stoweidlem61.7  |-  C  =  ( J  Cn  K
)
stoweidlem61.8  |-  ( ph  ->  A  C_  C )
stoweidlem61.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem61.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem61.11  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem61.12  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem61.13  |-  ( ph  ->  F  e.  C )
stoweidlem61.14  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
stoweidlem61.15  |-  ( ph  ->  E  e.  RR+ )
stoweidlem61.16  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem61  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Distinct variable groups:    f, g,
q, r, t, x, A    f, E, g, q, r, t, x   
f, F, g, q, r, x    f, J, g, r, t    T, f, g, q, r, t, x    ph, f, g, q, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, r, q)    F( t)    J( x, q)    K( x, f, g, r, q)

Proof of Theorem stoweidlem61
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3  |-  F/_ t F
2 stoweidlem61.2 . . 3  |-  F/ t
ph
3 stoweidlem61.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem61.5 . . 3  |-  T  = 
U. J
5 stoweidlem61.7 . . 3  |-  C  =  ( J  Cn  K
)
6 eqid 2380 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( F `  t )  <_  ( ( j  -  ( 1  / 
3 ) )  x.  E ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( F `
 t )  <_ 
( ( j  -  ( 1  /  3
) )  x.  E
) } )
7 eqid 2380 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_  ( F `  t ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_ 
( F `  t
) } )
8 stoweidlem61.4 . . 3  |-  ( ph  ->  J  e.  Comp )
9 stoweidlem61.6 . . 3  |-  ( ph  ->  T  =/=  (/) )
10 stoweidlem61.8 . . 3  |-  ( ph  ->  A  C_  C )
11 stoweidlem61.9 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
12 stoweidlem61.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
13 stoweidlem61.11 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
14 stoweidlem61.12 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
15 stoweidlem61.13 . . 3  |-  ( ph  ->  F  e.  C )
16 stoweidlem61.14 . . 3  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
17 stoweidlem61.15 . . 3  |-  ( ph  ->  E  e.  RR+ )
18 stoweidlem61.16 . . 3  |-  ( ph  ->  E  <  ( 1  /  3 ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 27470 . 2  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) ) )
20 nfv 1626 . . . . 5  |-  F/ t  g  e.  A
212, 20nfan 1836 . . . 4  |-  F/ t ( ph  /\  g  e.  A )
2217ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  E  e.  RR+ )
233, 4, 5, 15fcnre 27357 . . . . . . 7  |-  ( ph  ->  F : T --> RR )
2423fnvinran 27346 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2524adantlr 696 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2610sselda 3284 . . . . . . 7  |-  ( (
ph  /\  g  e.  A )  ->  g  e.  C )
273, 4, 5, 26fcnre 27357 . . . . . 6  |-  ( (
ph  /\  g  e.  A )  ->  g : T --> RR )
2827fnvinran 27346 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
29 simpll1 996 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  E  e.  RR+ )
30 simpll2 997 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  e.  RR )
31 simpll3 998 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  e.  RR )
32 simplr 732 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  j  e.  RR )
33 simprll 739 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
) )
34 simprlr 740 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )
35 simprrr 742 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( g `  t
) )
36 simprrl 741 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  <  (
( j  +  ( 1  /  3 ) )  x.  E ) )
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 27423 . . . . . . 7  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( abs `  ( ( g `  t )  -  ( F `  t )
) )  <  (
2  x.  E ) )
3837ex 424 . . . . . 6  |-  ( ( ( E  e.  RR+  /\  ( F `  t
)  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  ->  ( ( ( ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
3938rexlimdva 2766 . . . . 5  |-  ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `
 t )  e.  RR )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4022, 25, 28, 39syl3anc 1184 . . . 4  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4121, 40ralimdaa 2719 . . 3  |-  ( (
ph  /\  g  e.  A )  ->  ( A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4241reximdva 2754 . 2  |-  ( ph  ->  ( E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4319, 42mpd 15 1  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2503    =/= wne 2543   A.wral 2642   E.wrex 2643   {crab 2646    C_ wss 3256   (/)c0 3564   U.cuni 3950   class class class wbr 4146    e. cmpt 4200   ran crn 4812   ` cfv 5387  (class class class)co 6013   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   2c2 9974   3c3 9975   4c4 9976   RR+crp 10537   (,)cioo 10841   ...cfz 10968   abscabs 11959   topGenctg 13585    Cn ccn 17203   Compccmp 17364
This theorem is referenced by:  stoweidlem62  27472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ioc 10846  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-submnd 14659  df-mulg 14735  df-cntz 15036  df-cmn 15334  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-cn 17206  df-cnp 17207  df-cmp 17365  df-tx 17508  df-hmeo 17701  df-xms 18252  df-ms 18253  df-tms 18254
  Copyright terms: Public domain W3C validator