Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Unicode version

Theorem stoweidlem61 32009
Description: This lemma proves that there exists a function  g as in the proof in [BrosowskiDeutsh] p. 92:  g is in the subalgebra, and for all  t in  T, abs( f(t) - g(t) ) < 2*ε. Here  F is used to represent f in the paper, and  E is used to represent ε. For this lemma there's the further assumption that the function  F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1  |-  F/_ t F
stoweidlem61.2  |-  F/ t
ph
stoweidlem61.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem61.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem61.5  |-  T  = 
U. J
stoweidlem61.6  |-  ( ph  ->  T  =/=  (/) )
stoweidlem61.7  |-  C  =  ( J  Cn  K
)
stoweidlem61.8  |-  ( ph  ->  A  C_  C )
stoweidlem61.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem61.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem61.11  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem61.12  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem61.13  |-  ( ph  ->  F  e.  C )
stoweidlem61.14  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
stoweidlem61.15  |-  ( ph  ->  E  e.  RR+ )
stoweidlem61.16  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem61  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Distinct variable groups:    f, g,
q, r, t, x, A    f, E, g, q, r, t, x   
f, F, g, q, r, x    f, J, g, r, t    T, f, g, q, r, t, x    ph, f, g, q, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, r, q)    F( t)    J( x, q)    K( x, f, g, r, q)

Proof of Theorem stoweidlem61
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3  |-  F/_ t F
2 stoweidlem61.2 . . 3  |-  F/ t
ph
3 stoweidlem61.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem61.5 . . 3  |-  T  = 
U. J
5 stoweidlem61.7 . . 3  |-  C  =  ( J  Cn  K
)
6 eqid 2382 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( F `  t )  <_  ( ( j  -  ( 1  / 
3 ) )  x.  E ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( F `
 t )  <_ 
( ( j  -  ( 1  /  3
) )  x.  E
) } )
7 eqid 2382 . . 3  |-  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_  ( F `  t ) } )  =  ( j  e.  ( 0 ... n
)  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3 ) )  x.  E )  <_ 
( F `  t
) } )
8 stoweidlem61.4 . . 3  |-  ( ph  ->  J  e.  Comp )
9 stoweidlem61.6 . . 3  |-  ( ph  ->  T  =/=  (/) )
10 stoweidlem61.8 . . 3  |-  ( ph  ->  A  C_  C )
11 stoweidlem61.9 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
12 stoweidlem61.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
13 stoweidlem61.11 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
14 stoweidlem61.12 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
15 stoweidlem61.13 . . 3  |-  ( ph  ->  F  e.  C )
16 stoweidlem61.14 . . 3  |-  ( ph  ->  A. t  e.  T 
0  <_  ( F `  t ) )
17 stoweidlem61.15 . . 3  |-  ( ph  ->  E  e.  RR+ )
18 stoweidlem61.16 . . 3  |-  ( ph  ->  E  <  ( 1  /  3 ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 32008 . 2  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) ) )
20 nfv 1715 . . . . 5  |-  F/ t  g  e.  A
212, 20nfan 1936 . . . 4  |-  F/ t ( ph  /\  g  e.  A )
2217ad2antrr 723 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  E  e.  RR+ )
233, 4, 5, 15fcnre 31567 . . . . . . 7  |-  ( ph  ->  F : T --> RR )
2423fnvinran 31556 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2524adantlr 712 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2610sselda 3417 . . . . . . 7  |-  ( (
ph  /\  g  e.  A )  ->  g  e.  C )
273, 4, 5, 26fcnre 31567 . . . . . 6  |-  ( (
ph  /\  g  e.  A )  ->  g : T --> RR )
2827fnvinran 31556 . . . . 5  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
29 simpll1 1033 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  E  e.  RR+ )
30 simpll2 1034 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  e.  RR )
31 simpll3 1035 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  e.  RR )
32 simplr 753 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  j  e.  RR )
33 simprll 761 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
) )
34 simprlr 762 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )
35 simprrr 764 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( (
j  -  ( 4  /  3 ) )  x.  E )  < 
( g `  t
) )
36 simprrl 763 . . . . . . . 8  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( g `  t )  <  (
( j  +  ( 1  /  3 ) )  x.  E ) )
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 31961 . . . . . . 7  |-  ( ( ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  /\  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) ) )  ->  ( abs `  ( ( g `  t )  -  ( F `  t )
) )  <  (
2  x.  E ) )
3837ex 432 . . . . . 6  |-  ( ( ( E  e.  RR+  /\  ( F `  t
)  e.  RR  /\  ( g `  t
)  e.  RR )  /\  j  e.  RR )  ->  ( ( ( ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
3938rexlimdva 2874 . . . . 5  |-  ( ( E  e.  RR+  /\  ( F `  t )  e.  RR  /\  ( g `
 t )  e.  RR )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4022, 25, 28, 39syl3anc 1226 . . . 4  |-  ( ( ( ph  /\  g  e.  A )  /\  t  e.  T )  ->  ( E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  ( abs `  (
( g `  t
)  -  ( F `
 t ) ) )  <  ( 2  x.  E ) ) )
4121, 40ralimdaa 2784 . . 3  |-  ( (
ph  /\  g  e.  A )  ->  ( A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  ( 4  /  3 ) )  x.  E )  < 
( F `  t
)  /\  ( F `  t )  <_  (
( j  -  (
1  /  3 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
3 ) )  x.  E )  /\  (
( j  -  (
4  /  3 ) )  x.  E )  <  ( g `  t ) ) )  ->  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4241reximdva 2857 . 2  |-  ( ph  ->  ( E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  (
4  /  3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t )  <_  ( ( j  -  ( 1  /  3
) )  x.  E
) )  /\  (
( g `  t
)  <  ( (
j  +  ( 1  /  3 ) )  x.  E )  /\  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  ( g `  t ) ) )  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) ) )
4319, 42mpd 15 1  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  ( 2  x.  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399   F/wnf 1624    e. wcel 1826   F/_wnfc 2530    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736    C_ wss 3389   (/)c0 3711   U.cuni 4163   class class class wbr 4367    |-> cmpt 4425   ran crn 4914   ` cfv 5496  (class class class)co 6196   RRcr 9402   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408    < clt 9539    <_ cle 9540    - cmin 9718    / cdiv 10123   2c2 10502   3c3 10503   4c4 10504   RR+crp 11139   (,)cioo 11450   ...cfz 11593   abscabs 13069   topGenctg 14845    Cn ccn 19811   Compccmp 19972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-rlim 13314  df-sum 13511  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-cn 19814  df-cnp 19815  df-cmp 19973  df-tx 20148  df-hmeo 20341  df-xms 20908  df-ms 20909  df-tms 20910
This theorem is referenced by:  stoweidlem62  32010
  Copyright terms: Public domain W3C validator