Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Structured version   Visualization version   Unicode version

Theorem stoweidlem6 37866
Description: Lemma for stoweid 37925: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1  |-  F/ t  f  =  F
stoweidlem6.2  |-  F/ t  g  =  G
stoweidlem6.3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem6  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 1010 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2517 . . . . 5  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1345 . . . 4  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem6.2 . . . . . 6  |-  F/ t  g  =  G
5 fveq1 5864 . . . . . . . 8  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
65oveq2d 6306 . . . . . . 7  |-  ( g  =  G  ->  (
( F `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( G `  t
) ) )
76adantr 467 . . . . . 6  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( G `  t ) ) )
84, 7mpteq2da 4488 . . . . 5  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) ) )
98eleq1d 2513 . . . 4  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
103, 9imbi12d 322 . . 3  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t )
) )  e.  A
) ) )
11 simp2 1009 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
12 eleq1 2517 . . . . . . 7  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
13123anbi2d 1344 . . . . . 6  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
14 stoweidlem6.1 . . . . . . . 8  |-  F/ t  f  =  F
15 fveq1 5864 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1615oveq1d 6305 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( g `  t
) ) )
1716adantr 467 . . . . . . . 8  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( g `  t ) ) )
1814, 17mpteq2da 4488 . . . . . . 7  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) ) )
1918eleq1d 2513 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2013, 19imbi12d 322 . . . . 5  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
) ) )
21 stoweidlem6.3 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2220, 21vtoclg 3107 . . . 4  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2311, 22mpcom 37 . . 3  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A )
2410, 23vtoclg 3107 . 2  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
251, 24mpcom 37 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 985    = wceq 1444   F/wnf 1667    e. wcel 1887    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290    x. cmul 9544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-iota 5546  df-fv 5590  df-ov 6293
This theorem is referenced by:  stoweidlem19  37879  stoweidlem22  37882  stoweidlem32  37893  stoweidlem36  37897
  Copyright terms: Public domain W3C validator