Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Structured version   Unicode version

Theorem stoweidlem6 37435
Description: Lemma for stoweid 37494: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1  |-  F/ t  f  =  F
stoweidlem6.2  |-  F/ t  g  =  G
stoweidlem6.3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem6  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 1007 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2501 . . . . 5  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1341 . . . 4  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem6.2 . . . . . 6  |-  F/ t  g  =  G
5 fveq1 5880 . . . . . . . 8  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
65oveq2d 6321 . . . . . . 7  |-  ( g  =  G  ->  (
( F `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( G `  t
) ) )
76adantr 466 . . . . . 6  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( G `  t ) ) )
84, 7mpteq2da 4511 . . . . 5  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) ) )
98eleq1d 2498 . . . 4  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
103, 9imbi12d 321 . . 3  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t )
) )  e.  A
) ) )
11 simp2 1006 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
12 eleq1 2501 . . . . . . 7  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
13123anbi2d 1340 . . . . . 6  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
14 stoweidlem6.1 . . . . . . . 8  |-  F/ t  f  =  F
15 fveq1 5880 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1615oveq1d 6320 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( g `  t
) ) )
1716adantr 466 . . . . . . . 8  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( g `  t ) ) )
1814, 17mpteq2da 4511 . . . . . . 7  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) ) )
1918eleq1d 2498 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2013, 19imbi12d 321 . . . . 5  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
) ) )
21 stoweidlem6.3 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2220, 21vtoclg 3145 . . . 4  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2311, 22mpcom 37 . . 3  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A )
2410, 23vtoclg 3145 . 2  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
251, 24mpcom 37 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    = wceq 1437   F/wnf 1663    e. wcel 1870    |-> cmpt 4484   ` cfv 5601  (class class class)co 6305    x. cmul 9543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-iota 5565  df-fv 5609  df-ov 6308
This theorem is referenced by:  stoweidlem19  37448  stoweidlem22  37451  stoweidlem32  37462  stoweidlem36  37466
  Copyright terms: Public domain W3C validator