Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem57 Unicode version

Theorem stoweidlem57 27474
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem57.1  |-  F/_ t D
stoweidlem57.2  |-  F/_ t U
stoweidlem57.3  |-  F/ t
ph
stoweidlem57.4  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
stoweidlem57.5  |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
stoweidlem57.6  |-  K  =  ( topGen `  ran  (,) )
stoweidlem57.7  |-  T  = 
U. J
stoweidlem57.8  |-  C  =  ( J  Cn  K
)
stoweidlem57.9  |-  U  =  ( T  \  B
)
stoweidlem57.10  |-  ( ph  ->  J  e.  Comp )
stoweidlem57.11  |-  ( ph  ->  A  C_  C )
stoweidlem57.12  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem57.13  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem57.14  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
stoweidlem57.15  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem57.16  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
stoweidlem57.17  |-  ( ph  ->  D  e.  ( Clsd `  J ) )
stoweidlem57.18  |-  ( ph  ->  ( B  i^i  D
)  =  (/) )
stoweidlem57.19  |-  ( ph  ->  D  =/=  (/) )
stoweidlem57.20  |-  ( ph  ->  E  e.  RR+ )
stoweidlem57.21  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem57  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Distinct variable groups:    e, a,
f, t    q, a,
r, f, t, A    A, e, f, t    D, a, e, f    T, a, e, f, t    U, a, e, f    ph, a,
e, f    e, g, h, f, t, A    w, e, h, t, A    e, E, f, g, h, t   
g, r, h, A   
x, f, g, h, t, A    B, f,
g, r    f, V, g, r    f, Y, g, r    g, q, D    D, h, r    g, J, h, t    T, g, h, r    U, g, h, r    ph, g, h, r    w, r, E    A, q    D, q    T, q    U, q    ph, q    w, D    w, B    t, K    ph, w    w, J    w, T    w, U    w, Y    x, B    x, D    x, E    x, T
Allowed substitution hints:    ph( x, t)    B( t, e, h, q, a)    C( x, w, t, e, f, g, h, r, q, a)    D( t)    U( x, t)    E( q, a)    J( x, e, f, r, q, a)    K( x, w, e, f, g, h, r, q, a)    V( x, w, t, e, h, q, a)    Y( x, t, e, h, q, a)

Proof of Theorem stoweidlem57
Dummy variables  s  m  i  v  y  u  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem57.2 . . . . . . . . . 10  |-  F/_ t U
2 stoweidlem57.3 . . . . . . . . . . 11  |-  F/ t
ph
3 stoweidlem57.1 . . . . . . . . . . . 12  |-  F/_ t D
43nfcri 2517 . . . . . . . . . . 11  |-  F/ t  s  e.  D
52, 4nfan 1836 . . . . . . . . . 10  |-  F/ t ( ph  /\  s  e.  D )
6 stoweidlem57.6 . . . . . . . . . 10  |-  K  =  ( topGen `  ran  (,) )
7 stoweidlem57.10 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  Comp )
87adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  D )  ->  J  e.  Comp )
9 stoweidlem57.7 . . . . . . . . . 10  |-  T  = 
U. J
10 stoweidlem57.8 . . . . . . . . . 10  |-  C  =  ( J  Cn  K
)
11 stoweidlem57.11 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  C )
1211adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  D )  ->  A  C_  C )
13 stoweidlem57.12 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
14133adant1r 1177 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  D )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
15 stoweidlem57.13 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16153adant1r 1177 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  D )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
17 stoweidlem57.14 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
1817adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  D )  /\  a  e.  RR )  ->  (
t  e.  T  |->  a )  e.  A )
19 stoweidlem57.15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
2019adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  D )  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
21 stoweidlem57.9 . . . . . . . . . . . 12  |-  U  =  ( T  \  B
)
22 stoweidlem57.16 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
23 cmptop 17380 . . . . . . . . . . . . . . 15  |-  ( J  e.  Comp  ->  J  e. 
Top )
249iscld 17014 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  ( B  e.  ( Clsd `  J )  <->  ( B  C_  T  /\  ( T 
\  B )  e.  J ) ) )
257, 23, 243syl 19 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  e.  (
Clsd `  J )  <->  ( B  C_  T  /\  ( T  \  B )  e.  J ) ) )
2622, 25mpbid 202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  C_  T  /\  ( T  \  B
)  e.  J ) )
2726simprd 450 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  \  B
)  e.  J )
2821, 27syl5eqel 2471 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  J )
2928adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  D )  ->  U  e.  J )
30 stoweidlem57.17 . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  ( Clsd `  J ) )
319cldss 17016 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Clsd `  J
)  ->  D  C_  T
)
3230, 31syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  D  C_  T )
3332sselda 3291 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  D )  ->  s  e.  T )
34 stoweidlem57.18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  i^i  D
)  =  (/) )
35 disjr 3612 . . . . . . . . . . . . . 14  |-  ( ( B  i^i  D )  =  (/)  <->  A. s  e.  D  -.  s  e.  B
)
3634, 35sylib 189 . . . . . . . . . . . . 13  |-  ( ph  ->  A. s  e.  D  -.  s  e.  B
)
3736r19.21bi 2747 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  D )  ->  -.  s  e.  B )
3833, 37eldifd 3274 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  D )  ->  s  e.  ( T  \  B
) )
3938, 21syl6eleqr 2478 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  D )  ->  s  e.  U )
401, 5, 6, 8, 9, 10, 12, 14, 16, 18, 20, 29, 39stoweidlem56 27473 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  D )  ->  E. w  e.  J  ( (
s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )
41 simpl 444 . . . . . . . . . . 11  |-  ( ( w  e.  J  /\  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )  ->  w  e.  J )
42 simprll 739 . . . . . . . . . . 11  |-  ( ( w  e.  J  /\  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )  -> 
s  e.  w )
43 simprr 734 . . . . . . . . . . . 12  |-  ( ( w  e.  J  /\  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )  ->  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) )
44 stoweidlem57.5 . . . . . . . . . . . . 13  |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
4544rabeq2i 2896 . . . . . . . . . . . 12  |-  ( w  e.  V  <->  ( w  e.  J  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )
4641, 43, 45sylanbrc 646 . . . . . . . . . . 11  |-  ( ( w  e.  J  /\  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )  ->  w  e.  V )
4741, 42, 46jca32 522 . . . . . . . . . 10  |-  ( ( w  e.  J  /\  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )  -> 
( w  e.  J  /\  ( s  e.  w  /\  w  e.  V
) ) )
4847reximi2 2755 . . . . . . . . 9  |-  ( E. w  e.  J  ( ( s  e.  w  /\  w  C_  U )  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) )  ->  E. w  e.  J  ( s  e.  w  /\  w  e.  V
) )
49 rexex 2708 . . . . . . . . 9  |-  ( E. w  e.  J  ( s  e.  w  /\  w  e.  V )  ->  E. w ( s  e.  w  /\  w  e.  V ) )
5040, 48, 493syl 19 . . . . . . . 8  |-  ( (
ph  /\  s  e.  D )  ->  E. w
( s  e.  w  /\  w  e.  V
) )
51 nfcv 2523 . . . . . . . . 9  |-  F/_ w
s
52 nfrab1 2831 . . . . . . . . . 10  |-  F/_ w { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
5344, 52nfcxfr 2520 . . . . . . . . 9  |-  F/_ w V
5451, 53elunif 27355 . . . . . . . 8  |-  ( s  e.  U. V  <->  E. w
( s  e.  w  /\  w  e.  V
) )
5550, 54sylibr 204 . . . . . . 7  |-  ( (
ph  /\  s  e.  D )  ->  s  e.  U. V )
5655ex 424 . . . . . 6  |-  ( ph  ->  ( s  e.  D  ->  s  e.  U. V
) )
5756ssrdv 3297 . . . . 5  |-  ( ph  ->  D  C_  U. V )
58 cmpcld 17387 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  D  e.  ( Clsd `  J
) )  ->  ( Jt  D )  e.  Comp )
597, 30, 58syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( Jt  D )  e.  Comp )
607, 23syl 16 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
619cmpsub 17385 . . . . . . . 8  |-  ( ( J  e.  Top  /\  D  C_  T )  -> 
( ( Jt  D )  e.  Comp  <->  A. k  e.  ~P  J ( D  C_  U. k  ->  E. u  e.  ( ~P k  i^i 
Fin ) D  C_  U. u ) ) )
6260, 32, 61syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( Jt  D )  e.  Comp  <->  A. k  e.  ~P  J ( D  C_  U. k  ->  E. u  e.  ( ~P k  i^i 
Fin ) D  C_  U. u ) ) )
6359, 62mpbid 202 . . . . . 6  |-  ( ph  ->  A. k  e.  ~P  J ( D  C_  U. k  ->  E. u  e.  ( ~P k  i^i 
Fin ) D  C_  U. u ) )
64 ssrab2 3371 . . . . . . . 8  |-  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) }  C_  J
6544, 64eqsstri 3321 . . . . . . 7  |-  V  C_  J
6622elfvexd 5699 . . . . . . . . . 10  |-  ( ph  ->  J  e.  _V )
67 rabexg 4294 . . . . . . . . . 10  |-  ( J  e.  _V  ->  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) }  e.  _V )
6866, 67syl 16 . . . . . . . . 9  |-  ( ph  ->  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }  e.  _V )
6944, 68syl5eqel 2471 . . . . . . . 8  |-  ( ph  ->  V  e.  _V )
70 elpwg 3749 . . . . . . . 8  |-  ( V  e.  _V  ->  ( V  e.  ~P J  <->  V 
C_  J ) )
7169, 70syl 16 . . . . . . 7  |-  ( ph  ->  ( V  e.  ~P J 
<->  V  C_  J )
)
7265, 71mpbiri 225 . . . . . 6  |-  ( ph  ->  V  e.  ~P J
)
73 unieq 3966 . . . . . . . . 9  |-  ( k  =  V  ->  U. k  =  U. V )
7473sseq2d 3319 . . . . . . . 8  |-  ( k  =  V  ->  ( D  C_  U. k  <->  D  C_  U. V
) )
75 pweq 3745 . . . . . . . . . 10  |-  ( k  =  V  ->  ~P k  =  ~P V
)
7675ineq1d 3484 . . . . . . . . 9  |-  ( k  =  V  ->  ( ~P k  i^i  Fin )  =  ( ~P V  i^i  Fin ) )
7776rexeqdv 2854 . . . . . . . 8  |-  ( k  =  V  ->  ( E. u  e.  ( ~P k  i^i  Fin ) D  C_  U. u  <->  E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u
) )
7874, 77imbi12d 312 . . . . . . 7  |-  ( k  =  V  ->  (
( D  C_  U. k  ->  E. u  e.  ( ~P k  i^i  Fin ) D  C_  U. u
)  <->  ( D  C_  U. V  ->  E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u
) ) )
7978rspccva 2994 . . . . . 6  |-  ( ( A. k  e.  ~P  J ( D  C_  U. k  ->  E. u  e.  ( ~P k  i^i 
Fin ) D  C_  U. u )  /\  V  e.  ~P J )  -> 
( D  C_  U. V  ->  E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u
) )
8063, 72, 79syl2anc 643 . . . . 5  |-  ( ph  ->  ( D  C_  U. V  ->  E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u
) )
8157, 80mpd 15 . . . 4  |-  ( ph  ->  E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u
)
82 elin 3473 . . . . . . . . . 10  |-  ( u  e.  ( ~P V  i^i  Fin )  <->  ( u  e.  ~P V  /\  u  e.  Fin ) )
8382simplbi 447 . . . . . . . . 9  |-  ( u  e.  ( ~P V  i^i  Fin )  ->  u  e.  ~P V )
84 elpwi 3750 . . . . . . . . . . 11  |-  ( u  e.  ~P V  ->  u  C_  V )
8584ssdifssd 3428 . . . . . . . . . 10  |-  ( u  e.  ~P V  -> 
( u  \  { (/)
} )  C_  V
)
86 vex 2902 . . . . . . . . . . . 12  |-  u  e. 
_V
87 difexg 4292 . . . . . . . . . . . 12  |-  ( u  e.  _V  ->  (
u  \  { (/) } )  e.  _V )
8886, 87ax-mp 8 . . . . . . . . . . 11  |-  ( u 
\  { (/) } )  e.  _V
8988elpw 3748 . . . . . . . . . 10  |-  ( ( u  \  { (/) } )  e.  ~P V  <->  ( u  \  { (/) } )  C_  V )
9085, 89sylibr 204 . . . . . . . . 9  |-  ( u  e.  ~P V  -> 
( u  \  { (/)
} )  e.  ~P V )
9183, 90syl 16 . . . . . . . 8  |-  ( u  e.  ( ~P V  i^i  Fin )  ->  (
u  \  { (/) } )  e.  ~P V )
9282simprbi 451 . . . . . . . . 9  |-  ( u  e.  ( ~P V  i^i  Fin )  ->  u  e.  Fin )
93 diffi 7275 . . . . . . . . 9  |-  ( u  e.  Fin  ->  (
u  \  { (/) } )  e.  Fin )
9492, 93syl 16 . . . . . . . 8  |-  ( u  e.  ( ~P V  i^i  Fin )  ->  (
u  \  { (/) } )  e.  Fin )
95 elin 3473 . . . . . . . 8  |-  ( ( u  \  { (/) } )  e.  ( ~P V  i^i  Fin )  <->  ( ( u  \  { (/)
} )  e.  ~P V  /\  ( u  \  { (/) } )  e. 
Fin ) )
9691, 94, 95sylanbrc 646 . . . . . . 7  |-  ( u  e.  ( ~P V  i^i  Fin )  ->  (
u  \  { (/) } )  e.  ( ~P V  i^i  Fin ) )
97963ad2ant2 979 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ~P V  i^i  Fin )  /\  D  C_  U. u
)  ->  ( u  \  { (/) } )  e.  ( ~P V  i^i  Fin ) )
98 unidif0 4313 . . . . . . . . 9  |-  U. (
u  \  { (/) } )  =  U. u
9998sseq2i 3316 . . . . . . . 8  |-  ( D 
C_  U. ( u  \  { (/) } )  <->  D  C_  U. u
)
10099biimpri 198 . . . . . . 7  |-  ( D 
C_  U. u  ->  D  C_ 
U. ( u  \  { (/) } ) )
1011003ad2ant3 980 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ~P V  i^i  Fin )  /\  D  C_  U. u
)  ->  D  C_  U. (
u  \  { (/) } ) )
102 eldifsni 3871 . . . . . . . 8  |-  ( w  e.  ( u  \  { (/) } )  ->  w  =/=  (/) )
103102rgen 2714 . . . . . . 7  |-  A. w  e.  ( u  \  { (/)
} ) w  =/=  (/)
104103a1i 11 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ~P V  i^i  Fin )  /\  D  C_  U. u
)  ->  A. w  e.  ( u  \  { (/)
} ) w  =/=  (/) )
105 unieq 3966 . . . . . . . . 9  |-  ( r  =  ( u  \  { (/) } )  ->  U. r  =  U. ( u  \  { (/) } ) )
106105sseq2d 3319 . . . . . . . 8  |-  ( r  =  ( u  \  { (/) } )  -> 
( D  C_  U. r  <->  D 
C_  U. ( u  \  { (/) } ) ) )
107 raleq 2847 . . . . . . . 8  |-  ( r  =  ( u  \  { (/) } )  -> 
( A. w  e.  r  w  =/=  (/)  <->  A. w  e.  ( u  \  { (/)
} ) w  =/=  (/) ) )
108106, 107anbi12d 692 . . . . . . 7  |-  ( r  =  ( u  \  { (/) } )  -> 
( ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) )  <->  ( D  C_  U. ( u  \  { (/)
} )  /\  A. w  e.  ( u  \  { (/) } ) w  =/=  (/) ) ) )
109108rspcev 2995 . . . . . 6  |-  ( ( ( u  \  { (/)
} )  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. ( u  \  { (/)
} )  /\  A. w  e.  ( u  \  { (/) } ) w  =/=  (/) ) )  ->  E. r  e.  ( ~P V  i^i  Fin )
( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
11097, 101, 104, 109syl12anc 1182 . . . . 5  |-  ( (
ph  /\  u  e.  ( ~P V  i^i  Fin )  /\  D  C_  U. u
)  ->  E. r  e.  ( ~P V  i^i  Fin ) ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
111110rexlimdv3a 2775 . . . 4  |-  ( ph  ->  ( E. u  e.  ( ~P V  i^i  Fin ) D  C_  U. u  ->  E. r  e.  ( ~P V  i^i  Fin ) ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) ) )
11281, 111mpd 15 . . 3  |-  ( ph  ->  E. r  e.  ( ~P V  i^i  Fin ) ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
113 nfv 1626 . . . . . 6  |-  F/ h ph
114 nfcv 2523 . . . . . . . . . . . 12  |-  F/_ h RR+
115 nfre1 2705 . . . . . . . . . . . 12  |-  F/ h E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) )
116114, 115nfral 2702 . . . . . . . . . . 11  |-  F/ h A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
)
117 nfcv 2523 . . . . . . . . . . 11  |-  F/_ h J
118116, 117nfrab 2832 . . . . . . . . . 10  |-  F/_ h { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
11944, 118nfcxfr 2520 . . . . . . . . 9  |-  F/_ h V
120119nfpw 3753 . . . . . . . 8  |-  F/_ h ~P V
121 nfcv 2523 . . . . . . . 8  |-  F/_ h Fin
122120, 121nfin 3490 . . . . . . 7  |-  F/_ h
( ~P V  i^i  Fin )
123122nfcri 2517 . . . . . 6  |-  F/ h  r  e.  ( ~P V  i^i  Fin )
124 nfv 1626 . . . . . 6  |-  F/ h
( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) )
125113, 123, 124nf3an 1839 . . . . 5  |-  F/ h
( ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D 
C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
126 nfcv 2523 . . . . . . . . . . . 12  |-  F/_ t RR+
127 nfcv 2523 . . . . . . . . . . . . 13  |-  F/_ t A
128 nfra1 2699 . . . . . . . . . . . . . 14  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
129 nfra1 2699 . . . . . . . . . . . . . 14  |-  F/ t A. t  e.  w  ( h `  t
)  <  e
130 nfra1 2699 . . . . . . . . . . . . . 14  |-  F/ t A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t )
131128, 129, 130nf3an 1839 . . . . . . . . . . . . 13  |-  F/ t ( A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
)  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) )
132127, 131nfrex 2704 . . . . . . . . . . . 12  |-  F/ t E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) )
133126, 132nfral 2702 . . . . . . . . . . 11  |-  F/ t A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) )
134 nfcv 2523 . . . . . . . . . . 11  |-  F/_ t J
135133, 134nfrab 2832 . . . . . . . . . 10  |-  F/_ t { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
13644, 135nfcxfr 2520 . . . . . . . . 9  |-  F/_ t V
137136nfpw 3753 . . . . . . . 8  |-  F/_ t ~P V
138 nfcv 2523 . . . . . . . 8  |-  F/_ t Fin
139137, 138nfin 3490 . . . . . . 7  |-  F/_ t
( ~P V  i^i  Fin )
140139nfcri 2517 . . . . . 6  |-  F/ t  r  e.  ( ~P V  i^i  Fin )
141 nfcv 2523 . . . . . . . 8  |-  F/_ t U. r
1423, 141nfss 3284 . . . . . . 7  |-  F/ t  D  C_  U. r
143 nfv 1626 . . . . . . 7  |-  F/ t A. w  e.  r  w  =/=  (/)
144142, 143nfan 1836 . . . . . 6  |-  F/ t ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) )
1452, 140, 144nf3an 1839 . . . . 5  |-  F/ t ( ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D 
C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
146 nfv 1626 . . . . . 6  |-  F/ w ph
14753nfpw 3753 . . . . . . . 8  |-  F/_ w ~P V
148 nfcv 2523 . . . . . . . 8  |-  F/_ w Fin
149147, 148nfin 3490 . . . . . . 7  |-  F/_ w
( ~P V  i^i  Fin )
150149nfcri 2517 . . . . . 6  |-  F/ w  r  e.  ( ~P V  i^i  Fin )
151 nfv 1626 . . . . . . 7  |-  F/ w  D  C_  U. r
152 nfra1 2699 . . . . . . 7  |-  F/ w A. w  e.  r  w  =/=  (/)
153151, 152nfan 1836 . . . . . 6  |-  F/ w
( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) )
154146, 150, 153nf3an 1839 . . . . 5  |-  F/ w
( ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D 
C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )
155 stoweidlem57.4 . . . . 5  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
156 simp2 958 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  r  e.  ( ~P V  i^i  Fin ) )
157 simp3l 985 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  D  C_ 
U. r )
158 stoweidlem57.19 . . . . . 6  |-  ( ph  ->  D  =/=  (/) )
1591583ad2ant1 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  D  =/=  (/) )
160 stoweidlem57.20 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
1611603ad2ant1 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  E  e.  RR+ )
16226simpld 446 . . . . . 6  |-  ( ph  ->  B  C_  T )
1631623ad2ant1 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  B  C_  T )
164693ad2ant1 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  V  e.  _V )
165 retop 18666 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
1666, 165eqeltri 2457 . . . . . . . 8  |-  K  e. 
Top
167 cnfex 27367 . . . . . . . 8  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  e.  _V )
16860, 166, 167sylancl 644 . . . . . . 7  |-  ( ph  ->  ( J  Cn  K
)  e.  _V )
16911, 10syl6sseq 3337 . . . . . . 7  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
170168, 169ssexd 4291 . . . . . 6  |-  ( ph  ->  A  e.  _V )
1711703ad2ant1 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  A  e.  _V )
172125, 145, 154, 21, 155, 44, 156, 157, 159, 161, 163, 164, 171stoweidlem39 27456 . . . 4  |-  ( (
ph  /\  r  e.  ( ~P V  i^i  Fin )  /\  ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) ) )  ->  E. m  e.  NN  E. v ( v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
173172rexlimdv3a 2775 . . 3  |-  ( ph  ->  ( E. r  e.  ( ~P V  i^i  Fin ) ( D  C_  U. r  /\  A. w  e.  r  w  =/=  (/) )  ->  E. m  e.  NN  E. v ( v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) ) )
174112, 173mpd 15 . 2  |-  ( ph  ->  E. m  e.  NN  E. v ( v : ( 1 ... m
) --> V  /\  D  C_ 
U. ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
175 nfv 1626 . . . . . . 7  |-  F/ i ( ph  /\  m  e.  NN )
176 nfv 1626 . . . . . . . 8  |-  F/ i  v : ( 1 ... m ) --> V
177 nfv 1626 . . . . . . . 8  |-  F/ i  D  C_  U. ran  v
178 nfv 1626 . . . . . . . . . 10  |-  F/ i  y : ( 1 ... m ) --> Y
179 nfra1 2699 . . . . . . . . . 10  |-  F/ i A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) )
180178, 179nfan 1836 . . . . . . . . 9  |-  F/ i ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
181180nfex 1855 . . . . . . . 8  |-  F/ i E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
182176, 177, 181nf3an 1839 . . . . . . 7  |-  F/ i ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
183175, 182nfan 1836 . . . . . 6  |-  F/ i ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
184 nfv 1626 . . . . . . . 8  |-  F/ t  m  e.  NN
1852, 184nfan 1836 . . . . . . 7  |-  F/ t ( ph  /\  m  e.  NN )
186 nfcv 2523 . . . . . . . . 9  |-  F/_ t
v
187 nfcv 2523 . . . . . . . . 9  |-  F/_ t
( 1 ... m
)
188186, 187, 136nff 5529 . . . . . . . 8  |-  F/ t  v : ( 1 ... m ) --> V
189 nfcv 2523 . . . . . . . . 9  |-  F/_ t U. ran  v
1903, 189nfss 3284 . . . . . . . 8  |-  F/ t  D  C_  U. ran  v
191 nfcv 2523 . . . . . . . . . . 11  |-  F/_ t
y
192128, 127nfrab 2832 . . . . . . . . . . . 12  |-  F/_ t { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
193155, 192nfcxfr 2520 . . . . . . . . . . 11  |-  F/_ t Y
194191, 187, 193nff 5529 . . . . . . . . . 10  |-  F/ t  y : ( 1 ... m ) --> Y
195 nfra1 2699 . . . . . . . . . . . 12  |-  F/ t A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )
196 nfra1 2699 . . . . . . . . . . . 12  |-  F/ t A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t )
197195, 196nfan 1836 . . . . . . . . . . 11  |-  F/ t ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) )
198187, 197nfral 2702 . . . . . . . . . 10  |-  F/ t A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) )
199194, 198nfan 1836 . . . . . . . . 9  |-  F/ t ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
200199nfex 1855 . . . . . . . 8  |-  F/ t E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
201188, 190, 200nf3an 1839 . . . . . . 7  |-  F/ t ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
202185, 201nfan 1836 . . . . . 6  |-  F/ t ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
203 nfv 1626 . . . . . . 7  |-  F/ y ( ph  /\  m  e.  NN )
204 nfv 1626 . . . . . . . 8  |-  F/ y  v : ( 1 ... m ) --> V
205 nfv 1626 . . . . . . . 8  |-  F/ y  D  C_  U. ran  v
206 nfe1 1739 . . . . . . . 8  |-  F/ y E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
207204, 205, 206nf3an 1839 . . . . . . 7  |-  F/ y ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
208203, 207nfan 1836 . . . . . 6  |-  F/ y ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
209 nfv 1626 . . . . . . 7  |-  F/ w
( ph  /\  m  e.  NN )
210 nfcv 2523 . . . . . . . . 9  |-  F/_ w
v
211 nfcv 2523 . . . . . . . . 9  |-  F/_ w
( 1 ... m
)
212210, 211, 53nff 5529 . . . . . . . 8  |-  F/ w  v : ( 1 ... m ) --> V
213 nfv 1626 . . . . . . . 8  |-  F/ w  D  C_  U. ran  v
214 nfv 1626 . . . . . . . 8  |-  F/ w E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )
215212, 213, 214nf3an 1839 . . . . . . 7  |-  F/ w
( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
216209, 215nfan 1836 . . . . . 6  |-  F/ w
( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )
217 eqid 2387 . . . . . 6  |-  { h  e.  A  |  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
218 eqid 2387 . . . . . 6  |-  ( f  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) } , 
g  e.  { h  e.  A  |  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  |->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) ) )  =  ( f  e.  { h  e.  A  |  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) } , 
g  e.  { h  e.  A  |  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  |->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) ) )
219 eqid 2387 . . . . . 6  |-  ( t  e.  T  |->  ( i  e.  ( 1 ... m )  |->  ( ( y `  i ) `
 t ) ) )  =  ( t  e.  T  |->  ( i  e.  ( 1 ... m )  |->  ( ( y `  i ) `
 t ) ) )
220 eqid 2387 . . . . . 6  |-  ( t  e.  T  |->  (  seq  1 (  x.  , 
( ( t  e.  T  |->  ( i  e.  ( 1 ... m
)  |->  ( ( y `
 i ) `  t ) ) ) `
 t ) ) `
 m ) )  =  ( t  e.  T  |->  (  seq  1
(  x.  ,  ( ( t  e.  T  |->  ( i  e.  ( 1 ... m ) 
|->  ( ( y `  i ) `  t
) ) ) `  t ) ) `  m ) )
221 simp1ll 1020 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  /\  f  e.  A  /\  g  e.  A )  ->  ph )
222221, 15syld3an1 1230 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
223 simplll 735 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  /\  f  e.  A )  ->  ph )
22411sselda 3291 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A )  ->  f  e.  C )
2256, 9, 10, 224fcnre 27364 . . . . . . 7  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
226223, 225sylancom 649 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( v : ( 1 ... m ) --> V  /\  D  C_  U.
ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  /\  f  e.  A )  ->  f : T --> RR )
227 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  m  e.  NN )
228 simpr1 963 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  v : ( 1 ... m ) --> V )
2299cldss 17016 . . . . . . . 8  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  T
)
23022, 229syl 16 . . . . . . 7  |-  ( ph  ->  B  C_  T )
231230ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  B  C_  T )
232 simpr2 964 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  D  C_ 
U. ran  v )
23332ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  D  C_  T )
234 feq3 5518 . . . . . . . . . . . 12  |-  ( Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  ->  ( y : ( 1 ... m ) --> Y  <-> 
y : ( 1 ... m ) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) } ) )
235155, 234ax-mp 8 . . . . . . . . . . 11  |-  ( y : ( 1 ... m ) --> Y  <->  y :
( 1 ... m
) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) } )
236235biimpi 187 . . . . . . . . . 10  |-  ( y : ( 1 ... m ) --> Y  -> 
y : ( 1 ... m ) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) } )
237236anim1i 552 . . . . . . . . 9  |-  ( ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )  ->  ( y : ( 1 ... m
) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
238237eximi 1582 . . . . . . . 8  |-  ( E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) )  ->  E. y ( y : ( 1 ... m ) --> { h  e.  A  |  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
2392383ad2ant3 980 . . . . . . 7  |-  ( ( v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E. y
( y : ( 1 ... m ) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
240239adantl 453 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  E. y
( y : ( 1 ... m ) --> { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )
241 uniexg 4646 . . . . . . . . 9  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2427, 241syl 16 . . . . . . . 8  |-  ( ph  ->  U. J  e.  _V )
2439, 242syl5eqel 2471 . . . . . . 7  |-  ( ph  ->  T  e.  _V )
244243ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  T  e.  _V )
245160ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  E  e.  RR+ )
246 stoweidlem57.21 . . . . . . 7  |-  ( ph  ->  E  <  ( 1  /  3 ) )
247246ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  E  <  ( 1  /  3
) )
248183, 202, 208, 216, 9, 217, 218, 219, 220, 44, 222, 226, 227, 228, 231, 232, 233, 240, 244, 245, 247stoweidlem54 27471 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) ) )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  D  (
x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  < 
( x `  t
) ) )
249248ex 424 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  D  (
x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  < 
( x `  t
) ) ) )
250249exlimdv 1643 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. v ( v : ( 1 ... m
) --> V  /\  D  C_ 
U. ran  v  /\  E. y ( y : ( 1 ... m
) --> Y  /\  A. i  e.  ( 1 ... m ) ( A. t  e.  ( v `  i ) ( ( y `  i ) `  t
)  <  ( E  /  m )  /\  A. t  e.  B  (
1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  D  (
x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  < 
( x `  t
) ) ) )
251250rexlimdva 2773 . 2  |-  ( ph  ->  ( E. m  e.  NN  E. v ( v : ( 1 ... m ) --> V  /\  D  C_  U. ran  v  /\  E. y ( y : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1 ... m
) ( A. t  e.  ( v `  i
) ( ( y `
 i ) `  t )  <  ( E  /  m )  /\  A. t  e.  B  ( 1  -  ( E  /  m ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  D  (
x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  < 
( x `  t
) ) ) )
252174, 251mpd 15 1  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2510    =/= wne 2550   A.wral 2649   E.wrex 2650   {crab 2653   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   U.cuni 3957   class class class wbr 4153    e. cmpt 4207   ran crn 4819   -->wf 5390   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022   Fincfn 7045   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   3c3 9982   RR+crp 10544   (,)cioo 10848   ...cfz 10975    seq cseq 11250   ↾t crest 13575   topGenctg 13592   Topctop 16881   Clsdccld 17003    Cn ccn 17210   Compccmp 17371
This theorem is referenced by:  stoweidlem58  27475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-rlim 12210  df-sum 12407  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-cn 17213  df-cnp 17214  df-cmp 17372  df-tx 17515  df-hmeo 17708  df-xms 18259  df-ms 18260  df-tms 18261
  Copyright terms: Public domain W3C validator