Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Unicode version

Theorem stoweidlem56 27672
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here  Z is used to represent t0 in the paper,  v is used to represent  V in the paper, and  e is used to represent ε (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1  |-  F/_ t U
stoweidlem56.2  |-  F/ t
ph
stoweidlem56.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem56.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem56.5  |-  T  = 
U. J
stoweidlem56.6  |-  C  =  ( J  Cn  K
)
stoweidlem56.7  |-  ( ph  ->  A  C_  C )
stoweidlem56.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem56.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem56.10  |-  ( (
ph  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
stoweidlem56.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem56.12  |-  ( ph  ->  U  e.  J )
stoweidlem56.13  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem56  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Distinct variable groups:    e, f,
g, t, A    v,
e, x, t, A   
y, e, f, t, A    g, J, t    T, e, f, g, t    U, e, f, g    e, Z, f, g, t    ph, e,
f, g    f, q,
g, t, A, r   
y, q, T    U, q, y    Z, q, y    ph, q, y, r    T, r    U, r    ph, r    t, K    v, J    v, T, x    v, U, x   
v, Z
Allowed substitution hints:    ph( x, v, t)    C( x, y, v, t, e, f, g, r, q)    U( t)    J( x, y, e, f, r, q)    K( x, y, v, e, f, g, r, q)    Z( x, r)

Proof of Theorem stoweidlem56
Dummy variables  d  p  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5  |-  F/_ t U
2 stoweidlem56.2 . . . . 5  |-  F/ t
ph
3 stoweidlem56.3 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem56.4 . . . . 5  |-  ( ph  ->  J  e.  Comp )
5 stoweidlem56.5 . . . . 5  |-  T  = 
U. J
6 stoweidlem56.6 . . . . 5  |-  C  =  ( J  Cn  K
)
7 stoweidlem56.7 . . . . 5  |-  ( ph  ->  A  C_  C )
8 stoweidlem56.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
9 stoweidlem56.9 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
10 stoweidlem56.10 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
11 stoweidlem56.11 . . . . 5  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
12 stoweidlem56.12 . . . . 5  |-  ( ph  ->  U  e.  J )
13 stoweidlem56.13 . . . . 5  |-  ( ph  ->  Z  e.  U )
14 eqid 2404 . . . . 5  |-  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) }  =  {
h  e.  A  | 
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) ) }
15 eqid 2404 . . . . 5  |-  { w  e.  J  |  E. h  e.  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) } w  =  { t  e.  T  |  0  <  (
h `  t ) } }  =  {
w  e.  J  |  E. h  e.  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) } w  =  { t  e.  T  |  0  <  (
h `  t ) } }
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 27671 . . . 4  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
17 df-rex 2672 . . . 4  |-  ( E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  <->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
1816, 17sylib 189 . . 3  |-  ( ph  ->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
19 simpl 444 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  ph )
20 simprl 733 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  p  e.  A )
21 simprr3 1007 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  A. t  e.  ( T  \  U ) 0  <  ( p `  t ) )
22 nfv 1626 . . . . . . . . 9  |-  F/ t  p  e.  A
23 nfra1 2716 . . . . . . . . 9  |-  F/ t A. t  e.  ( T  \  U ) 0  <  ( p `
 t )
242, 22, 23nf3an 1845 . . . . . . . 8  |-  F/ t ( ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)
2543ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  J  e.  Comp )
267sselda 3308 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  A )  ->  p  e.  C )
2726, 6syl6eleq 2494 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  A )  ->  p  e.  ( J  Cn  K
) )
28273adant3 977 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  p  e.  ( J  Cn  K
) )
29 simp3 959 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)
30123ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  U  e.  J )
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 27644 . . . . . . 7  |-  ( (
ph  /\  p  e.  A  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  ->  E. d
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )
3219, 20, 21, 31syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )
33 simpr1 963 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  d  e.  RR+ )
34 simpr2 964 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  d  <  1
)
35 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  p  e.  A
)
36 simprr1 1005 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
3736adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
38 simprr2 1006 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( p `  Z
)  =  0 )
3938adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( p `  Z )  =  0 )
40 simpr3 965 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
4137, 39, 403jca 1134 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( A. t  e.  T  ( 0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) d  <_ 
( p `  t
) ) )
4235, 41jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( p  e.  A  /\  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) d  <_ 
( p `  t
) ) ) )
4333, 34, 423jca 1134 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  /\  ( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( p `  t ) ) )  ->  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
4443ex 424 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )  -> 
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4544eximdv 1629 . . . . . 6  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  -> 
( E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
)  ->  E. d
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4632, 45mpd 15 . . . . 5  |-  ( (
ph  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
4746ex 424 . . . 4  |-  ( ph  ->  ( ( p  e.  A  /\  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4847eximdv 1629 . . 3  |-  ( ph  ->  ( E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )  ->  E. p E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) ) )
4918, 48mpd 15 . 2  |-  ( ph  ->  E. p E. d
( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
50 nfv 1626 . . . . . . 7  |-  F/ t  d  e.  RR+
51 nfv 1626 . . . . . . 7  |-  F/ t  d  <  1
52 nfra1 2716 . . . . . . . . 9  |-  F/ t A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )
53 nfv 1626 . . . . . . . . 9  |-  F/ t ( p `  Z
)  =  0
54 nfra1 2716 . . . . . . . . 9  |-  F/ t A. t  e.  ( T  \  U ) d  <_  ( p `  t )
5552, 53, 54nf3an 1845 . . . . . . . 8  |-  F/ t ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
)
5622, 55nfan 1842 . . . . . . 7  |-  F/ t ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) )
5750, 51, 56nf3an 1845 . . . . . 6  |-  F/ t ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )
582, 57nfan 1842 . . . . 5  |-  F/ t ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )
59 nfcv 2540 . . . . 5  |-  F/_ t
p
60 eqid 2404 . . . . 5  |-  { t  e.  T  |  ( p `  t )  <  ( d  / 
2 ) }  =  { t  e.  T  |  ( p `  t )  <  (
d  /  2 ) }
617adantr 452 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A  C_  C
)
6283adant1r 1177 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
6393adant1r 1177 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6410adantlr 696 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  /\  y  e.  RR )  ->  ( t  e.  T  |->  y )  e.  A )
65 simpr1 963 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  d  e.  RR+ )
66 simpr2 964 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  d  <  1
)
6712adantr 452 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  U  e.  J
)
6813adantr 452 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  Z  e.  U
)
69 simpr3l 1018 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  p  e.  A
)
70 simp3r1 1065 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
7170adantl 453 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 ) )
72 simp3r2 1066 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  -> 
( p `  Z
)  =  0 )
7372adantl 453 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  ( p `  Z )  =  0 )
74 simp3r3 1067 . . . . . 6  |-  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
7574adantl 453 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  A. t  e.  ( T  \  U ) d  <_  ( p `  t ) )
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 27668 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
7776ex 424 . . 3  |-  ( ph  ->  ( ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) ) )
7877exlimdvv 1644 . 2  |-  ( ph  ->  ( E. p E. d ( d  e.  RR+  /\  d  <  1  /\  ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) d  <_  (
p `  t )
) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) ) )
7949, 78mpd 15 1  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1721   F/_wnfc 2527    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    \ cdif 3277    C_ wss 3280   U.cuni 3975   class class class wbr 4172    e. cmpt 4226   ran crn 4838   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   RR+crp 10568   (,)cioo 10872   topGenctg 13620    Cn ccn 17242   Compccmp 17403
This theorem is referenced by:  stoweidlem57  27673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305
  Copyright terms: Public domain W3C validator