Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem55 Structured version   Unicode version

Theorem stoweidlem55 37735
Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem55.1  |-  F/_ t U
stoweidlem55.2  |-  F/ t
ph
stoweidlem55.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem55.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem55.5  |-  T  = 
U. J
stoweidlem55.6  |-  C  =  ( J  Cn  K
)
stoweidlem55.7  |-  ( ph  ->  A  C_  C )
stoweidlem55.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem55.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem55.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem55.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem55.12  |-  ( ph  ->  U  e.  J )
stoweidlem55.13  |-  ( ph  ->  Z  e.  U )
stoweidlem55.14  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem55.15  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
Assertion
Ref Expression
stoweidlem55  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g, h, q, t, T    f,
r, A, g, q, t    x, f, h, q, t, T    Q, f, g, q    U, f, g, h, q    f, Z, g, h, q, t    ph, f, g, h, q   
w, g, h, t, T    g, W    A, h, x    h, J, t, w    q, p, t, T    A, p    U, p    Z, p    x, r, T    U, r, x    ph, r, x    t, K    x, w, Q    w, U    ph, w    x, Z
Allowed substitution hints:    ph( t, p)    A( w)    C( x, w, t, f, g, h, r, q, p)    Q( t, h, r, p)    U( t)    J( x, f, g, r, q, p)    K( x, w, f, g, h, r, q, p)    W( x, w, t, f, h, r, q, p)    Z( w, r)

Proof of Theorem stoweidlem55
StepHypRef Expression
1 0re 9643 . . . . 5  |-  0  e.  RR
2 stoweidlem55.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32stoweidlem4 37683 . . . . 5  |-  ( (
ph  /\  0  e.  RR )  ->  ( t  e.  T  |->  0 )  e.  A )
41, 3mpan2 675 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  0 )  e.  A
)
54adantr 466 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  |->  0 )  e.  A )
6 stoweidlem55.2 . . . . 5  |-  F/ t
ph
7 nfcv 2584 . . . . . . 7  |-  F/_ t T
8 stoweidlem55.1 . . . . . . 7  |-  F/_ t U
97, 8nfdif 3586 . . . . . 6  |-  F/_ t
( T  \  U
)
10 nfcv 2584 . . . . . 6  |-  F/_ t (/)
119, 10nfeq 2595 . . . . 5  |-  F/ t ( T  \  U
)  =  (/)
126, 11nfan 1984 . . . 4  |-  F/ t ( ph  /\  ( T  \  U )  =  (/) )
13 0le0 10699 . . . . . . . 8  |-  0  <_  0
14 0cn 9635 . . . . . . . . 9  |-  0  e.  CC
15 eqid 2422 . . . . . . . . . 10  |-  ( t  e.  T  |->  0 )  =  ( t  e.  T  |->  0 )
1615fvmpt2 5969 . . . . . . . . 9  |-  ( ( t  e.  T  /\  0  e.  CC )  ->  ( ( t  e.  T  |->  0 ) `  t )  =  0 )
1714, 16mpan2 675 . . . . . . . 8  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  =  0 )
1813, 17syl5breqr 4457 . . . . . . 7  |-  ( t  e.  T  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
1918adantl 467 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
20 0le1 10137 . . . . . . . 8  |-  0  <_  1
2117, 20syl6eqbr 4458 . . . . . . 7  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2221adantl 467 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2319, 22jca 534 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 ) )
2423ex 435 . . . 4  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  ->  ( 0  <_  ( ( t  e.  T  |->  0 ) `
 t )  /\  ( ( t  e.  T  |->  0 ) `  t )  <_  1
) ) )
2512, 24ralrimi 2825 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) )
26 stoweidlem55.13 . . . . . 6  |-  ( ph  ->  Z  e.  U )
27 stoweidlem55.12 . . . . . 6  |-  ( ph  ->  U  e.  J )
2826, 27jca 534 . . . . 5  |-  ( ph  ->  ( Z  e.  U  /\  U  e.  J
) )
29 elunii 4221 . . . . . 6  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  U. J
)
30 stoweidlem55.5 . . . . . 6  |-  T  = 
U. J
3129, 30syl6eleqr 2521 . . . . 5  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  T )
32 eqidd 2423 . . . . . 6  |-  ( t  =  Z  ->  0  =  0 )
33 c0ex 9637 . . . . . 6  |-  0  e.  _V
3432, 15, 33fvmpt 5960 . . . . 5  |-  ( Z  e.  T  ->  (
( t  e.  T  |->  0 ) `  Z
)  =  0 )
3528, 31, 343syl 18 . . . 4  |-  ( ph  ->  ( ( t  e.  T  |->  0 ) `  Z )  =  0 )
3635adantr 466 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( ( t  e.  T  |->  0 ) `
 Z )  =  0 )
3711rzalf 37198 . . . 4  |-  ( ( T  \  U )  =  (/)  ->  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) )
3837adantl 467 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) )
39 nfcv 2584 . . . . . . 7  |-  F/_ t
p
40 nfmpt1 4510 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  0 )
4139, 40nfeq 2595 . . . . . 6  |-  F/ t  p  =  ( t  e.  T  |->  0 )
42 fveq1 5876 . . . . . . . 8  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  t
)  =  ( ( t  e.  T  |->  0 ) `  t ) )
4342breq2d 4432 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <_  (
p `  t )  <->  0  <_  ( ( t  e.  T  |->  0 ) `
 t ) ) )
4442breq1d 4430 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  t )  <_  1  <->  ( ( t  e.  T  |->  0 ) `  t
)  <_  1 ) )
4543, 44anbi12d 715 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 ) ) )
4641, 45ralbid 2859 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) ) )
47 fveq1 5876 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  Z
)  =  ( ( t  e.  T  |->  0 ) `  Z ) )
4847eqeq1d 2424 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  Z )  =  0  <-> 
( ( t  e.  T  |->  0 ) `  Z )  =  0 ) )
4942breq2d 4432 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <  (
p `  t )  <->  0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5041, 49ralbid 2859 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  ( T  \  U
) 0  <  (
p `  t )  <->  A. t  e.  ( T 
\  U ) 0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5146, 48, 503anbi123d 1335 . . . 4  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( A. t  e.  T  ( 0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) )  <->  ( A. t  e.  T  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 )  /\  (
( t  e.  T  |->  0 ) `  Z
)  =  0  /\ 
A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) ) ) )
5251rspcev 3182 . . 3  |-  ( ( ( t  e.  T  |->  0 )  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )  /\  ( ( t  e.  T  |->  0 ) `
 Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
535, 25, 36, 38, 52syl13anc 1266 . 2  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
5411nfn 1956 . . . 4  |-  F/ t  -.  ( T  \  U )  =  (/)
556, 54nfan 1984 . . 3  |-  F/ t ( ph  /\  -.  ( T  \  U )  =  (/) )
56 stoweidlem55.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
57 stoweidlem55.14 . . 3  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
58 stoweidlem55.15 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
59 stoweidlem55.6 . . 3  |-  C  =  ( J  Cn  K
)
60 stoweidlem55.4 . . . 4  |-  ( ph  ->  J  e.  Comp )
6160adantr 466 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  J  e. 
Comp )
62 stoweidlem55.7 . . . 4  |-  ( ph  ->  A  C_  C )
6362adantr 466 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  A  C_  C )
64 stoweidlem55.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
65643adant1r 1257 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
66 stoweidlem55.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
67663adant1r 1257 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
682adantlr 719 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
69 stoweidlem55.11 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7069adantlr 719 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7127adantr 466 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  U  e.  J )
72 neqne 37234 . . . 4  |-  ( -.  ( T  \  U
)  =  (/)  ->  ( T  \  U )  =/=  (/) )
7372adantl 467 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( T 
\  U )  =/=  (/) )
7426adantr 466 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  Z  e.  U )
758, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74stoweidlem53 37733 . 2  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )
7653, 75pm2.61dan 798 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   F/wnf 1663    e. wcel 1868   F/_wnfc 2570    =/= wne 2618   A.wral 2775   E.wrex 2776   {crab 2779    \ cdif 3433    C_ wss 3436   (/)c0 3761   U.cuni 4216   class class class wbr 4420    |-> cmpt 4479   ran crn 4850   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676   (,)cioo 11635   topGenctg 15323    Cn ccn 20226   Compccmp 20387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-clim 13539  df-sum 13740  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-mulr 15191  df-starv 15192  df-sca 15193  df-vsca 15194  df-ip 15195  df-tset 15196  df-ple 15197  df-ds 15199  df-unif 15200  df-hom 15201  df-cco 15202  df-rest 15308  df-topn 15309  df-0g 15327  df-gsum 15328  df-topgen 15329  df-pt 15330  df-prds 15333  df-xrs 15387  df-qtop 15393  df-imas 15394  df-xps 15397  df-mre 15479  df-mrc 15480  df-acs 15482  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-submnd 16570  df-mulg 16663  df-cntz 16958  df-cmn 17419  df-psmet 18949  df-xmet 18950  df-met 18951  df-bl 18952  df-mopn 18953  df-cnfld 18958  df-top 19907  df-bases 19908  df-topon 19909  df-topsp 19910  df-cld 20020  df-cn 20229  df-cnp 20230  df-cmp 20388  df-tx 20563  df-hmeo 20756  df-xms 21321  df-ms 21322  df-tms 21323
This theorem is referenced by:  stoweidlem56  37736
  Copyright terms: Public domain W3C validator