Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem55 Structured version   Unicode version

Theorem stoweidlem55 29775
Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem55.1  |-  F/_ t U
stoweidlem55.2  |-  F/ t
ph
stoweidlem55.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem55.4  |-  ( ph  ->  J  e.  Comp )
stoweidlem55.5  |-  T  = 
U. J
stoweidlem55.6  |-  C  =  ( J  Cn  K
)
stoweidlem55.7  |-  ( ph  ->  A  C_  C )
stoweidlem55.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem55.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem55.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem55.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem55.12  |-  ( ph  ->  U  e.  J )
stoweidlem55.13  |-  ( ph  ->  Z  e.  U )
stoweidlem55.14  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem55.15  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
Assertion
Ref Expression
stoweidlem55  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g, h, q, t, T    f,
r, A, g, q, t    x, f, h, q, t, T    Q, f, g, q    U, f, g, h, q    f, Z, g, h, q, t    ph, f, g, h, q   
w, g, h, t, T    g, W    A, h, x    h, J, t, w    q, p, t, T    A, p    U, p    Z, p    x, r, T    U, r, x    ph, r, x    t, K    x, w, Q    w, U    ph, w    x, Z
Allowed substitution hints:    ph( t, p)    A( w)    C( x, w, t, f, g, h, r, q, p)    Q( t, h, r, p)    U( t)    J( x, f, g, r, q, p)    K( x, w, f, g, h, r, q, p)    W( x, w, t, f, h, r, q, p)    Z( w, r)

Proof of Theorem stoweidlem55
StepHypRef Expression
1 0re 9382 . . . . 5  |-  0  e.  RR
2 stoweidlem55.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32stoweidlem4 29724 . . . . 5  |-  ( (
ph  /\  0  e.  RR )  ->  ( t  e.  T  |->  0 )  e.  A )
41, 3mpan2 666 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  0 )  e.  A
)
54adantr 462 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  |->  0 )  e.  A )
6 stoweidlem55.2 . . . . 5  |-  F/ t
ph
7 nfcv 2577 . . . . . . 7  |-  F/_ t T
8 stoweidlem55.1 . . . . . . 7  |-  F/_ t U
97, 8nfdif 3474 . . . . . 6  |-  F/_ t
( T  \  U
)
10 nfcv 2577 . . . . . 6  |-  F/_ t (/)
119, 10nfeq 2584 . . . . 5  |-  F/ t ( T  \  U
)  =  (/)
126, 11nfan 1865 . . . 4  |-  F/ t ( ph  /\  ( T  \  U )  =  (/) )
13 0le0 10407 . . . . . . . 8  |-  0  <_  0
14 0cn 9374 . . . . . . . . 9  |-  0  e.  CC
15 eqid 2441 . . . . . . . . . 10  |-  ( t  e.  T  |->  0 )  =  ( t  e.  T  |->  0 )
1615fvmpt2 5778 . . . . . . . . 9  |-  ( ( t  e.  T  /\  0  e.  CC )  ->  ( ( t  e.  T  |->  0 ) `  t )  =  0 )
1714, 16mpan2 666 . . . . . . . 8  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  =  0 )
1813, 17syl5breqr 4325 . . . . . . 7  |-  ( t  e.  T  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
1918adantl 463 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  0  <_  ( ( t  e.  T  |->  0 ) `  t ) )
20 0le1 9859 . . . . . . . 8  |-  0  <_  1
2117, 20syl6eqbr 4326 . . . . . . 7  |-  ( t  e.  T  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2221adantl 463 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )
2319, 22jca 529 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  =  (/) )  /\  t  e.  T )  ->  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 ) )
2423ex 434 . . . 4  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( t  e.  T  ->  ( 0  <_  ( ( t  e.  T  |->  0 ) `
 t )  /\  ( ( t  e.  T  |->  0 ) `  t )  <_  1
) ) )
2512, 24ralrimi 2795 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) )
26 stoweidlem55.13 . . . . . 6  |-  ( ph  ->  Z  e.  U )
27 stoweidlem55.12 . . . . . 6  |-  ( ph  ->  U  e.  J )
2826, 27jca 529 . . . . 5  |-  ( ph  ->  ( Z  e.  U  /\  U  e.  J
) )
29 elunii 4093 . . . . . 6  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  U. J
)
30 stoweidlem55.5 . . . . . 6  |-  T  = 
U. J
3129, 30syl6eleqr 2532 . . . . 5  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  T )
32 eqidd 2442 . . . . . 6  |-  ( t  =  Z  ->  0  =  0 )
33 c0ex 9376 . . . . . 6  |-  0  e.  _V
3432, 15, 33fvmpt 5771 . . . . 5  |-  ( Z  e.  T  ->  (
( t  e.  T  |->  0 ) `  Z
)  =  0 )
3528, 31, 343syl 20 . . . 4  |-  ( ph  ->  ( ( t  e.  T  |->  0 ) `  Z )  =  0 )
3635adantr 462 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( ( t  e.  T  |->  0 ) `
 Z )  =  0 )
3711rzalf 29664 . . . 4  |-  ( ( T  \  U )  =  (/)  ->  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) )
3837adantl 463 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) )
39 nfcv 2577 . . . . . . 7  |-  F/_ t
p
40 nfmpt1 4378 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  0 )
4139, 40nfeq 2584 . . . . . 6  |-  F/ t  p  =  ( t  e.  T  |->  0 )
42 fveq1 5687 . . . . . . . 8  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  t
)  =  ( ( t  e.  T  |->  0 ) `  t ) )
4342breq2d 4301 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <_  (
p `  t )  <->  0  <_  ( ( t  e.  T  |->  0 ) `
 t ) ) )
4442breq1d 4299 . . . . . . 7  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  t )  <_  1  <->  ( ( t  e.  T  |->  0 ) `  t
)  <_  1 ) )
4543, 44anbi12d 705 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 ) ) )
4641, 45ralbid 2731 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  <->  A. t  e.  T  ( 0  <_  (
( t  e.  T  |->  0 ) `  t
)  /\  ( (
t  e.  T  |->  0 ) `  t )  <_  1 ) ) )
47 fveq1 5687 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( p `  Z
)  =  ( ( t  e.  T  |->  0 ) `  Z ) )
4847eqeq1d 2449 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( p `  Z )  =  0  <-> 
( ( t  e.  T  |->  0 ) `  Z )  =  0 ) )
4942breq2d 4301 . . . . . 6  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( 0  <  (
p `  t )  <->  0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5041, 49ralbid 2731 . . . . 5  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( A. t  e.  ( T  \  U
) 0  <  (
p `  t )  <->  A. t  e.  ( T 
\  U ) 0  <  ( ( t  e.  T  |->  0 ) `
 t ) ) )
5146, 48, 503anbi123d 1284 . . . 4  |-  ( p  =  ( t  e.  T  |->  0 )  -> 
( ( A. t  e.  T  ( 0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) )  <->  ( A. t  e.  T  (
0  <_  ( (
t  e.  T  |->  0 ) `  t )  /\  ( ( t  e.  T  |->  0 ) `
 t )  <_ 
1 )  /\  (
( t  e.  T  |->  0 ) `  Z
)  =  0  /\ 
A. t  e.  ( T  \  U ) 0  <  ( ( t  e.  T  |->  0 ) `  t ) ) ) )
5251rspcev 3070 . . 3  |-  ( ( ( t  e.  T  |->  0 )  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( ( t  e.  T  |->  0 ) `  t )  /\  (
( t  e.  T  |->  0 ) `  t
)  <_  1 )  /\  ( ( t  e.  T  |->  0 ) `
 Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
( t  e.  T  |->  0 ) `  t
) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
535, 25, 36, 38, 52syl13anc 1215 . 2  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
5411nfn 1840 . . . 4  |-  F/ t  -.  ( T  \  U )  =  (/)
556, 54nfan 1865 . . 3  |-  F/ t ( ph  /\  -.  ( T  \  U )  =  (/) )
56 stoweidlem55.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
57 stoweidlem55.14 . . 3  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
58 stoweidlem55.15 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
59 stoweidlem55.6 . . 3  |-  C  =  ( J  Cn  K
)
60 stoweidlem55.4 . . . 4  |-  ( ph  ->  J  e.  Comp )
6160adantr 462 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  J  e. 
Comp )
62 stoweidlem55.7 . . . 4  |-  ( ph  ->  A  C_  C )
6362adantr 462 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  A  C_  C )
64 stoweidlem55.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
65643adant1r 1206 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
66 stoweidlem55.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
67663adant1r 1206 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
682adantlr 709 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
69 stoweidlem55.11 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7069adantlr 709 . . 3  |-  ( ( ( ph  /\  -.  ( T  \  U )  =  (/) )  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
7127adantr 462 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  U  e.  J )
72 df-ne 2606 . . . . 5  |-  ( ( T  \  U )  =/=  (/)  <->  -.  ( T  \  U )  =  (/) )
7372biimpri 206 . . . 4  |-  ( -.  ( T  \  U
)  =  (/)  ->  ( T  \  U )  =/=  (/) )
7473adantl 463 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( T 
\  U )  =/=  (/) )
7526adantr 462 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  Z  e.  U )
768, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 74, 75stoweidlem53 29773 . 2  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. p  e.  A  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )
7753, 76pm2.61dan 784 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   F/wnf 1594    e. wcel 1761   F/_wnfc 2564    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    \ cdif 3322    C_ wss 3325   (/)c0 3634   U.cuni 4088   class class class wbr 4289    e. cmpt 4347   ran crn 4837   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415   (,)cioo 11296   topGenctg 14372    Cn ccn 18787   Compccmp 18948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-cn 18790  df-cnp 18791  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-xms 19854  df-ms 19855  df-tms 19856
This theorem is referenced by:  stoweidlem56  29776
  Copyright terms: Public domain W3C validator