Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem54 Structured version   Unicode version

Theorem stoweidlem54 29989
Description: There exists a function  x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here  D is used to represent  A in the paper, because here  A is used for the subalgebra of functions.  E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem54.1  |-  F/ i
ph
stoweidlem54.2  |-  F/ t
ph
stoweidlem54.3  |-  F/ y
ph
stoweidlem54.4  |-  F/ w ph
stoweidlem54.5  |-  T  = 
U. J
stoweidlem54.6  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
stoweidlem54.7  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
stoweidlem54.8  |-  F  =  ( t  e.  T  |->  ( i  e.  ( 1 ... M ) 
|->  ( ( y `  i ) `  t
) ) )
stoweidlem54.9  |-  Z  =  ( t  e.  T  |->  (  seq 1 (  x.  ,  ( F `
 t ) ) `
 M ) )
stoweidlem54.10  |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
stoweidlem54.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem54.12  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem54.13  |-  ( ph  ->  M  e.  NN )
stoweidlem54.14  |-  ( ph  ->  W : ( 1 ... M ) --> V )
stoweidlem54.15  |-  ( ph  ->  B  C_  T )
stoweidlem54.16  |-  ( ph  ->  D  C_  U. ran  W
)
stoweidlem54.17  |-  ( ph  ->  D  C_  T )
stoweidlem54.18  |-  ( ph  ->  E. y ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )
stoweidlem54.19  |-  ( ph  ->  T  e.  _V )
stoweidlem54.20  |-  ( ph  ->  E  e.  RR+ )
stoweidlem54.21  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem54  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Distinct variable groups:    f, g, h, i, t, y, T    A, f, g, h, t, y    B, f, g, i, y    f, E, g, i, y    f, F, g    f, M, g, h, i, t    f, W, g, i    f, Y, g, i    ph, f,
g    w, i, t, y, T    D, i, y    x, t, y, A    w, B    w, E    w, M    w, W    w, Y    x, B    x, D    x, E    x, M    x, P    x, T
Allowed substitution hints:    ph( x, y, w, t, e, h, i)    A( w, e, i)    B( t, e, h)    D( w, t, e, f, g, h)    P( y, w, t, e, f, g, h, i)    T( e)    U( x, y, w, t, e, f, g, h, i)    E( t, e, h)    F( x, y, w, t, e, h, i)    J( x, y, w, t, e, f, g, h, i)    M( y, e)    V( x, y, w, t, e, f, g, h, i)    W( x, y, t, e, h)    Y( x, y, t, e, h)    Z( x, y, w, t, e, f, g, h, i)

Proof of Theorem stoweidlem54
StepHypRef Expression
1 stoweidlem54.3 . . 3  |-  F/ y
ph
2 nfv 1674 . . 3  |-  F/ y E. x ( x  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
3 stoweidlem54.18 . . 3  |-  ( ph  ->  E. y ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )
4 stoweidlem54.1 . . . . 5  |-  F/ i
ph
5 nfv 1674 . . . . . 6  |-  F/ i  y : ( 1 ... M ) --> Y
6 nfra1 2877 . . . . . 6  |-  F/ i A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )
75, 6nfan 1863 . . . . 5  |-  F/ i ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) )
84, 7nfan 1863 . . . 4  |-  F/ i ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )
9 stoweidlem54.2 . . . . 5  |-  F/ t
ph
10 nfcv 2613 . . . . . . 7  |-  F/_ t
y
11 nfcv 2613 . . . . . . 7  |-  F/_ t
( 1 ... M
)
12 stoweidlem54.6 . . . . . . . 8  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
13 nfra1 2877 . . . . . . . . 9  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
14 nfcv 2613 . . . . . . . . 9  |-  F/_ t A
1513, 14nfrab 3000 . . . . . . . 8  |-  F/_ t { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
1612, 15nfcxfr 2611 . . . . . . 7  |-  F/_ t Y
1710, 11, 16nff 5655 . . . . . 6  |-  F/ t  y : ( 1 ... M ) --> Y
18 nfra1 2877 . . . . . . . 8  |-  F/ t A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )
19 nfra1 2877 . . . . . . . 8  |-  F/ t A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t )
2018, 19nfan 1863 . . . . . . 7  |-  F/ t ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )
2111, 20nfral 2880 . . . . . 6  |-  F/ t A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )
2217, 21nfan 1863 . . . . 5  |-  F/ t ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) )
239, 22nfan 1863 . . . 4  |-  F/ t ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )
24 stoweidlem54.4 . . . . 5  |-  F/ w ph
25 nfv 1674 . . . . 5  |-  F/ w
( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) )
2624, 25nfan 1863 . . . 4  |-  F/ w
( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )
27 stoweidlem54.10 . . . . 5  |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
28 nfrab1 2999 . . . . 5  |-  F/_ w { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( h `  t ) ) }
2927, 28nfcxfr 2611 . . . 4  |-  F/_ w V
30 stoweidlem54.7 . . . 4  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
31 eqid 2451 . . . 4  |-  (  seq 1 ( P , 
y ) `  M
)  =  (  seq 1 ( P , 
y ) `  M
)
32 stoweidlem54.8 . . . 4  |-  F  =  ( t  e.  T  |->  ( i  e.  ( 1 ... M ) 
|->  ( ( y `  i ) `  t
) ) )
33 stoweidlem54.9 . . . 4  |-  Z  =  ( t  e.  T  |->  (  seq 1 (  x.  ,  ( F `
 t ) ) `
 M ) )
34 stoweidlem54.13 . . . . 5  |-  ( ph  ->  M  e.  NN )
3534adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  M  e.  NN )
36 stoweidlem54.14 . . . . 5  |-  ( ph  ->  W : ( 1 ... M ) --> V )
3736adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  W :
( 1 ... M
) --> V )
38 simprl 755 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  y :
( 1 ... M
) --> Y )
39 simpr 461 . . . . 5  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  w  e.  V )  ->  w  e.  V )
4027rabeq2i 3067 . . . . . 6  |-  ( w  e.  V  <->  ( w  e.  J  /\  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 )  /\  A. t  e.  w  (
h `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
h `  t )
) ) )
4140simplbi 460 . . . . 5  |-  ( w  e.  V  ->  w  e.  J )
42 elssuni 4221 . . . . . 6  |-  ( w  e.  J  ->  w  C_ 
U. J )
43 stoweidlem54.5 . . . . . 6  |-  T  = 
U. J
4442, 43syl6sseqr 3503 . . . . 5  |-  ( w  e.  J  ->  w  C_  T )
4539, 41, 443syl 20 . . . 4  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  w  e.  V )  ->  w  C_  T )
46 stoweidlem54.16 . . . . 5  |-  ( ph  ->  D  C_  U. ran  W
)
4746adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  D  C_  U. ran  W )
48 stoweidlem54.17 . . . . 5  |-  ( ph  ->  D  C_  T )
4948adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  D  C_  T
)
50 stoweidlem54.15 . . . . 5  |-  ( ph  ->  B  C_  T )
5150adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  B  C_  T
)
52 r19.26 2947 . . . . . . 7  |-  ( A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )  <->  ( A. i  e.  ( 1 ... M ) A. t  e.  ( W `  i ) ( ( y `  i ) `
 t )  < 
( E  /  M
)  /\  A. i  e.  ( 1 ... M
) A. t  e.  B  ( 1  -  ( E  /  M
) )  <  (
( y `  i
) `  t )
) )
5352simplbi 460 . . . . . 6  |-  ( A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )  ->  A. i  e.  (
1 ... M ) A. t  e.  ( W `  i ) ( ( y `  i ) `
 t )  < 
( E  /  M
) )
5453ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  A. i  e.  ( 1 ... M
) A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M ) )
5554r19.21bi 2912 . . . 4  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  i  e.  ( 1 ... M
) )  ->  A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M ) )
5652simprbi 464 . . . . . 6  |-  ( A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )  ->  A. i  e.  (
1 ... M ) A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) )
5756ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  A. i  e.  ( 1 ... M
) A. t  e.  B  ( 1  -  ( E  /  M
) )  <  (
( y `  i
) `  t )
)
5857r19.21bi 2912 . . . 4  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  i  e.  ( 1 ... M
) )  ->  A. t  e.  B  ( 1  -  ( E  /  M ) )  < 
( ( y `  i ) `  t
) )
59 stoweidlem54.11 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
60593adant1r 1212 . . . 4  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
61 stoweidlem54.12 . . . . 5  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
6261adantlr 714 . . . 4  |-  ( ( ( ph  /\  (
y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M
) ( A. t  e.  ( W `  i
) ( ( y `
 i ) `  t )  <  ( E  /  M )  /\  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  /\  f  e.  A )  ->  f : T --> RR )
63 stoweidlem54.19 . . . . 5  |-  ( ph  ->  T  e.  _V )
6463adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  T  e.  _V )
65 stoweidlem54.20 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
6665adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E  e.  RR+ )
67 stoweidlem54.21 . . . . 5  |-  ( ph  ->  E  <  ( 1  /  3 ) )
6867adantr 465 . . . 4  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E  <  ( 1  /  3 ) )
698, 23, 26, 29, 12, 30, 31, 32, 33, 35, 37, 38, 45, 47, 49, 51, 55, 58, 60, 62, 64, 66, 68stoweidlem51 29986 . . 3  |-  ( (
ph  /\  ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i ) ( ( y `  i ) `  t
)  <  ( E  /  M )  /\  A. t  e.  B  (
1  -  ( E  /  M ) )  <  ( ( y `
 i ) `  t ) ) ) )  ->  E. x
( x  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( x `  t
)  /\  ( x `  t )  <_  1
)  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) ) )
701, 2, 3, 69exlimdd 1917 . 2  |-  ( ph  ->  E. x ( x  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) ) )
71 df-rex 2801 . 2  |-  ( E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) )  <->  E. x
( x  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( x `  t
)  /\  ( x `  t )  <_  1
)  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) ) )
7270, 71sylibr 212 1  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587   F/wnf 1590    e. wcel 1758   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3070    \ cdif 3425    C_ wss 3428   U.cuni 4191   class class class wbr 4392    |-> cmpt 4450   ran crn 4941   -->wf 5514   ` cfv 5518  (class class class)co 6192    |-> cmpt2 6194   RRcr 9384   0cc0 9385   1c1 9386    x. cmul 9390    < clt 9521    <_ cle 9522    - cmin 9698    / cdiv 10096   NNcn 10425   3c3 10475   RR+crp 11094   ...cfz 11540    seqcseq 11909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-n0 10683  df-z 10750  df-uz 10965  df-rp 11095  df-fz 11541  df-fzo 11652  df-seq 11910  df-exp 11969
This theorem is referenced by:  stoweidlem57  29992
  Copyright terms: Public domain W3C validator