Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Unicode version

Theorem stoweidlem53 31667
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1  |-  F/_ t U
stoweidlem53.2  |-  F/ t
ph
stoweidlem53.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem53.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem53.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem53.6  |-  T  = 
U. J
stoweidlem53.7  |-  C  =  ( J  Cn  K
)
stoweidlem53.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem53.9  |-  ( ph  ->  A  C_  C )
stoweidlem53.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem53.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem53.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem53.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem53.14  |-  ( ph  ->  U  e.  J )
stoweidlem53.15  |-  ( ph  ->  ( T  \  U
)  =/=  (/) )
stoweidlem53.16  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem53  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g, h, q, t, T    f,
r, q, t, T   
x, f, q, t, T    A, f, g, h, q, t    Q, f, g, q    U, f, g, h, q    f, Z, g, h, q, t    ph, f, g, h, q   
w, g, h, t, T    g, W    h, J, t, w    q, p, t, T    A, p    U, p    Z, p    A, r    U, r    ph, r    t, K    w, Q    w, U    ph, w    x, A    x, Q    x, U    x, Z    ph, x
Allowed substitution hints:    ph( t, p)    A( w)    C( x, w, t, f, g, h, r, q, p)    Q( t, h, r, p)    U( t)    J( x, f, g, r, q, p)    K( x, w, f, g, h, r, q, p)    W( x, w, t, f, h, r, q, p)    Z( w, r)

Proof of Theorem stoweidlem53
Dummy variables  i  m  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4  |-  F/_ t U
2 stoweidlem53.2 . . . 4  |-  F/ t
ph
3 stoweidlem53.3 . . . 4  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem53.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
5 stoweidlem53.5 . . . 4  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
6 stoweidlem53.6 . . . 4  |-  T  = 
U. J
7 stoweidlem53.7 . . . 4  |-  C  =  ( J  Cn  K
)
8 stoweidlem53.8 . . . 4  |-  ( ph  ->  J  e.  Comp )
9 stoweidlem53.9 . . . 4  |-  ( ph  ->  A  C_  C )
10 stoweidlem53.10 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
11 stoweidlem53.11 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
12 stoweidlem53.12 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
13 stoweidlem53.13 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
14 stoweidlem53.14 . . . 4  |-  ( ph  ->  U  e.  J )
15 stoweidlem53.16 . . . 4  |-  ( ph  ->  Z  e.  U )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 31664 . . 3  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
17 nfv 1683 . . . . . 6  |-  F/ t  u  e.  Fin
18 nfcv 2629 . . . . . . 7  |-  F/_ t
u
19 nfv 1683 . . . . . . . . . . . . 13  |-  F/ t ( h `  Z
)  =  0
20 nfra1 2848 . . . . . . . . . . . . 13  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
2119, 20nfan 1875 . . . . . . . . . . . 12  |-  F/ t ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )
22 nfcv 2629 . . . . . . . . . . . 12  |-  F/_ t A
2321, 22nfrab 3048 . . . . . . . . . . 11  |-  F/_ t { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
244, 23nfcxfr 2627 . . . . . . . . . 10  |-  F/_ t Q
25 nfrab1 3047 . . . . . . . . . . 11  |-  F/_ t { t  e.  T  |  0  <  (
h `  t ) }
2625nfeq2 2646 . . . . . . . . . 10  |-  F/ t  w  =  { t  e.  T  |  0  <  ( h `  t ) }
2724, 26nfrex 2930 . . . . . . . . 9  |-  F/ t E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) }
28 nfcv 2629 . . . . . . . . 9  |-  F/_ t J
2927, 28nfrab 3048 . . . . . . . 8  |-  F/_ t { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
305, 29nfcxfr 2627 . . . . . . 7  |-  F/_ t W
3118, 30nfss 3502 . . . . . 6  |-  F/ t  u  C_  W
32 nfcv 2629 . . . . . . . 8  |-  F/_ t T
3332, 1nfdif 3630 . . . . . . 7  |-  F/_ t
( T  \  U
)
34 nfcv 2629 . . . . . . 7  |-  F/_ t U. u
3533, 34nfss 3502 . . . . . 6  |-  F/ t ( T  \  U
)  C_  U. u
3617, 31, 35nf3an 1877 . . . . 5  |-  F/ t ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
372, 36nfan 1875 . . . 4  |-  F/ t ( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
38 nfv 1683 . . . . 5  |-  F/ w ph
39 nfv 1683 . . . . . 6  |-  F/ w  u  e.  Fin
40 nfcv 2629 . . . . . . 7  |-  F/_ w u
41 nfrab1 3047 . . . . . . . 8  |-  F/_ w { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
425, 41nfcxfr 2627 . . . . . . 7  |-  F/_ w W
4340, 42nfss 3502 . . . . . 6  |-  F/ w  u  C_  W
44 nfv 1683 . . . . . 6  |-  F/ w
( T  \  U
)  C_  U. u
4539, 43, 44nf3an 1877 . . . . 5  |-  F/ w
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
4638, 45nfan 1875 . . . 4  |-  F/ w
( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
47 nfv 1683 . . . . 5  |-  F/ h ph
48 nfv 1683 . . . . . 6  |-  F/ h  u  e.  Fin
49 nfcv 2629 . . . . . . 7  |-  F/_ h u
50 nfre1 2928 . . . . . . . . 9  |-  F/ h E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) }
51 nfcv 2629 . . . . . . . . 9  |-  F/_ h J
5250, 51nfrab 3048 . . . . . . . 8  |-  F/_ h { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
535, 52nfcxfr 2627 . . . . . . 7  |-  F/_ h W
5449, 53nfss 3502 . . . . . 6  |-  F/ h  u  C_  W
55 nfv 1683 . . . . . 6  |-  F/ h
( T  \  U
)  C_  U. u
5648, 54, 55nf3an 1877 . . . . 5  |-  F/ h
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
5747, 56nfan 1875 . . . 4  |-  F/ h
( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
58 eqid 2467 . . . 4  |-  ( w  e.  u  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  <  (
h `  t ) } } )  =  ( w  e.  u  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  <  ( h `  t
) } } )
59 cmptop 19763 . . . . . . . 8  |-  ( J  e.  Comp  ->  J  e. 
Top )
608, 59syl 16 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
61 retop 21136 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  Top
623, 61eqeltri 2551 . . . . . . 7  |-  K  e. 
Top
63 cnfex 31296 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  e.  _V )
6460, 62, 63sylancl 662 . . . . . 6  |-  ( ph  ->  ( J  Cn  K
)  e.  _V )
659, 7syl6sseq 3555 . . . . . 6  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
6664, 65ssexd 4600 . . . . 5  |-  ( ph  ->  A  e.  _V )
6766adantr 465 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  A  e.  _V )
68 simpr1 1002 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  u  e.  Fin )
69 simpr2 1003 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  u  C_  W )
70 simpr3 1004 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
71 stoweidlem53.15 . . . . 5  |-  ( ph  ->  ( T  \  U
)  =/=  (/) )
7271adantr 465 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  ( T  \  U )  =/=  (/) )
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 31649 . . 3  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  E. m E. q ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )
7416, 73exlimddv 1702 . 2  |-  ( ph  ->  E. m E. q
( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
75 nfv 1683 . . . . . 6  |-  F/ i
ph
76 nfv 1683 . . . . . . 7  |-  F/ i  m  e.  NN
77 nfv 1683 . . . . . . . 8  |-  F/ i  q : ( 1 ... m ) --> Q
78 nfcv 2629 . . . . . . . . 9  |-  F/_ i
( T  \  U
)
79 nfre1 2928 . . . . . . . . 9  |-  F/ i E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8078, 79nfral 2853 . . . . . . . 8  |-  F/ i A. t  e.  ( T  \  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8177, 80nfan 1875 . . . . . . 7  |-  F/ i ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
8276, 81nfan 1875 . . . . . 6  |-  F/ i ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) )
8375, 82nfan 1875 . . . . 5  |-  F/ i ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
84 nfv 1683 . . . . . . 7  |-  F/ t  m  e.  NN
85 nfcv 2629 . . . . . . . . 9  |-  F/_ t
q
86 nfcv 2629 . . . . . . . . 9  |-  F/_ t
( 1 ... m
)
8785, 86, 24nff 5733 . . . . . . . 8  |-  F/ t  q : ( 1 ... m ) --> Q
88 nfra1 2848 . . . . . . . 8  |-  F/ t A. t  e.  ( T  \  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8987, 88nfan 1875 . . . . . . 7  |-  F/ t ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
9084, 89nfan 1875 . . . . . 6  |-  F/ t ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) )
912, 90nfan 1875 . . . . 5  |-  F/ t ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
92 eqid 2467 . . . . 5  |-  ( t  e.  T  |->  ( ( 1  /  m )  x.  sum_ y  e.  ( 1 ... m ) ( ( q `  y ) `  t
) ) )  =  ( t  e.  T  |->  ( ( 1  /  m )  x.  sum_ y  e.  ( 1 ... m ) ( ( q `  y
) `  t )
) )
93 simprl 755 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  m  e.  NN )
94 simprrl 763 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  q :
( 1 ... m
) --> Q )
95 simprrr 764 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
9665adantr 465 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  A  C_  ( J  Cn  K ) )
97103adant1r 1221 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
98113adant1r 1221 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
9912adantlr 714 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)
100 elssuni 4281 . . . . . . . . 9  |-  ( U  e.  J  ->  U  C_ 
U. J )
101100, 6syl6sseqr 3556 . . . . . . . 8  |-  ( U  e.  J  ->  U  C_  T )
10214, 101syl 16 . . . . . . 7  |-  ( ph  ->  U  C_  T )
103102, 15sseldd 3510 . . . . . 6  |-  ( ph  ->  Z  e.  T )
104103adantr 465 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  Z  e.  T )
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 31658 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  E. p  e.  A  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )
106105ex 434 . . 3  |-  ( ph  ->  ( ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
107106exlimdvv 1701 . 2  |-  ( ph  ->  ( E. m E. q ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
10874, 107mpd 15 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596   F/wnf 1599    e. wcel 1767   F/_wnfc 2615    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821   _Vcvv 3118    \ cdif 3478    C_ wss 3481   (/)c0 3790   U.cuni 4251   class class class wbr 4453    |-> cmpt 4511   ran crn 5006   -->wf 5590   ` cfv 5594  (class class class)co 6295   Fincfn 7528   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    / cdiv 10218   NNcn 10548   (,)cioo 11541   ...cfz 11684   sum_csu 13488   topGenctg 14710   Topctop 19263    Cn ccn 19593   Compccmp 19754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-sum 13489  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-cn 19596  df-cnp 19597  df-cmp 19755  df-tx 19931  df-hmeo 20124  df-xms 20691  df-ms 20692  df-tms 20693
This theorem is referenced by:  stoweidlem55  31669
  Copyright terms: Public domain W3C validator