Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Unicode version

Theorem stoweidlem50 29845
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1  |-  F/_ t U
stoweidlem50.2  |-  F/ t
ph
stoweidlem50.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem50.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem50.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem50.6  |-  T  = 
U. J
stoweidlem50.7  |-  C  =  ( J  Cn  K
)
stoweidlem50.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem50.9  |-  ( ph  ->  A  C_  C )
stoweidlem50.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem50.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem50.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem50.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem50.14  |-  ( ph  ->  U  e.  J )
stoweidlem50.15  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem50  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Distinct variable groups:    u, J    u, T    u, U    u, W    f, g, h, t, T    f, q, g, t, T    f, r, A, q, t    x, f, q, t, T    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g, q    w, g, h, t, T    A, g, h    g, W    Z, q, x    T, r    U, r    ph, r    t, J, w   
t, K    ph, u    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h)    A( w, u)    C( x, w, u, t, f, g, h, r, q)    Q( x, u, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, u, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, u, r)

Proof of Theorem stoweidlem50
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3  |-  F/_ t U
2 stoweidlem50.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 nfrab1 2901 . . . 4  |-  F/_ h { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
42, 3nfcxfr 2576 . . 3  |-  F/_ h Q
5 nfv 1673 . . 3  |-  F/ q
ph
6 stoweidlem50.2 . . 3  |-  F/ t
ph
7 stoweidlem50.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
8 stoweidlem50.5 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9 stoweidlem50.6 . . 3  |-  T  = 
U. J
10 stoweidlem50.8 . . 3  |-  ( ph  ->  J  e.  Comp )
11 stoweidlem50.9 . . . 4  |-  ( ph  ->  A  C_  C )
12 stoweidlem50.7 . . . 4  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3402 . . 3  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem50.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
15 stoweidlem50.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16 stoweidlem50.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
17 stoweidlem50.13 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
18 stoweidlem50.14 . . 3  |-  ( ph  ->  U  e.  J )
19 stoweidlem50.15 . . 3  |-  ( ph  ->  Z  e.  U )
20 uniexg 6377 . . . . 5  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2110, 20syl 16 . . . 4  |-  ( ph  ->  U. J  e.  _V )
229, 21syl5eqel 2527 . . 3  |-  ( ph  ->  T  e.  _V )
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 29841 . 2  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
24 dfin4 3590 . . . . . . . . . . 11  |-  ( T  i^i  U )  =  ( T  \  ( T  \  U ) )
25 elssuni 4121 . . . . . . . . . . . . . 14  |-  ( U  e.  J  ->  U  C_ 
U. J )
2618, 25syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  U. J )
2726, 9syl6sseqr 3403 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  T )
28 dfss1 3555 . . . . . . . . . . . 12  |-  ( U 
C_  T  <->  ( T  i^i  U )  =  U )
2927, 28sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( T  i^i  U
)  =  U )
3024, 29syl5eqr 2489 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  ( T  \  U ) )  =  U )
3130, 18eqeltrd 2517 . . . . . . . . 9  |-  ( ph  ->  ( T  \  ( T  \  U ) )  e.  J )
32 cmptop 18998 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  J  e. 
Top )
3310, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
34 difssd 3484 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  C_  T )
359iscld2 18632 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3633, 34, 35syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3731, 36mpbird 232 . . . . . . . 8  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
38 cmpcld 19005 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
3910, 37, 38syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
409cmpsub 19003 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4133, 34, 40syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4239, 41mpbid 210 . . . . . 6  |-  ( ph  ->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) )
43 ssrab2 3437 . . . . . . . 8  |-  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  C_  J
448, 43eqsstri 3386 . . . . . . 7  |-  W  C_  J
458, 10rabexd 4444 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
46 elpwg 3868 . . . . . . . 8  |-  ( W  e.  _V  ->  ( W  e.  ~P J  <->  W 
C_  J ) )
4745, 46syl 16 . . . . . . 7  |-  ( ph  ->  ( W  e.  ~P J 
<->  W  C_  J )
)
4844, 47mpbiri 233 . . . . . 6  |-  ( ph  ->  W  e.  ~P J
)
49 unieq 4099 . . . . . . . . 9  |-  ( c  =  W  ->  U. c  =  U. W )
5049sseq2d 3384 . . . . . . . 8  |-  ( c  =  W  ->  (
( T  \  U
)  C_  U. c  <->  ( T  \  U ) 
C_  U. W ) )
51 pweq 3863 . . . . . . . . . 10  |-  ( c  =  W  ->  ~P c  =  ~P W
)
5251ineq1d 3551 . . . . . . . . 9  |-  ( c  =  W  ->  ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin ) )
5352rexeqdv 2924 . . . . . . . 8  |-  ( c  =  W  ->  ( E. u  e.  ( ~P c  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u
) )
5450, 53imbi12d 320 . . . . . . 7  |-  ( c  =  W  ->  (
( ( T  \  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i  Fin ) ( T  \  U )  C_  U. u
)  <->  ( ( T 
\  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) ) )
5554rspccva 3072 . . . . . 6  |-  ( ( A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J )  -> 
( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5642, 48, 55syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5756imp 429 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
)
58 df-rex 2721 . . . 4  |-  ( E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u ) )
5957, 58sylib 196 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U )  C_  U. u
) )
60 elin 3539 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  <->  ( u  e.  ~P W  /\  u  e.  Fin ) )
6160simprbi 464 . . . . . . 7  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  Fin )
6261ad2antrl 727 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  Fin )
6360simplbi 460 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  ~P W )
6463ad2antrl 727 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ~P W )
6564elpwid 3870 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  C_  W )
66 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
6762, 65, 663jca 1168 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
6867ex 434 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
)  ->  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) ) )
6968eximdv 1676 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u )  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) ) )
7059, 69mpd 15 . 2  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) )
7123, 70mpdan 668 1  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586   F/wnf 1589    e. wcel 1756   F/_wnfc 2566    =/= wne 2606   A.wral 2715   E.wrex 2716   {crab 2719   _Vcvv 2972    \ cdif 3325    i^i cin 3327    C_ wss 3328   ~Pcpw 3860   U.cuni 4091   class class class wbr 4292    e. cmpt 4350   ran crn 4841   ` cfv 5418  (class class class)co 6091   Fincfn 7310   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    <_ cle 9419   (,)cioo 11300   ↾t crest 14359   topGenctg 14376   Topctop 18498   Clsdccld 18620    Cn ccn 18828   Compccmp 18989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-cn 18831  df-cnp 18832  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-xms 19895  df-ms 19896  df-tms 19897
This theorem is referenced by:  stoweidlem53  29848
  Copyright terms: Public domain W3C validator