Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Unicode version

Theorem stoweidlem50 29754
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1  |-  F/_ t U
stoweidlem50.2  |-  F/ t
ph
stoweidlem50.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem50.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem50.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem50.6  |-  T  = 
U. J
stoweidlem50.7  |-  C  =  ( J  Cn  K
)
stoweidlem50.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem50.9  |-  ( ph  ->  A  C_  C )
stoweidlem50.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem50.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem50.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem50.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem50.14  |-  ( ph  ->  U  e.  J )
stoweidlem50.15  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem50  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Distinct variable groups:    u, J    u, T    u, U    u, W    f, g, h, t, T    f, q, g, t, T    f, r, A, q, t    x, f, q, t, T    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g, q    w, g, h, t, T    A, g, h    g, W    Z, q, x    T, r    U, r    ph, r    t, J, w   
t, K    ph, u    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h)    A( w, u)    C( x, w, u, t, f, g, h, r, q)    Q( x, u, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, u, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, u, r)

Proof of Theorem stoweidlem50
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3  |-  F/_ t U
2 stoweidlem50.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 nfrab1 2899 . . . 4  |-  F/_ h { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
42, 3nfcxfr 2574 . . 3  |-  F/_ h Q
5 nfv 1678 . . 3  |-  F/ q
ph
6 stoweidlem50.2 . . 3  |-  F/ t
ph
7 stoweidlem50.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
8 stoweidlem50.5 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9 stoweidlem50.6 . . 3  |-  T  = 
U. J
10 stoweidlem50.8 . . 3  |-  ( ph  ->  J  e.  Comp )
11 stoweidlem50.9 . . . 4  |-  ( ph  ->  A  C_  C )
12 stoweidlem50.7 . . . 4  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3399 . . 3  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem50.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
15 stoweidlem50.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16 stoweidlem50.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
17 stoweidlem50.13 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
18 stoweidlem50.14 . . 3  |-  ( ph  ->  U  e.  J )
19 stoweidlem50.15 . . 3  |-  ( ph  ->  Z  e.  U )
20 uniexg 6376 . . . . 5  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2110, 20syl 16 . . . 4  |-  ( ph  ->  U. J  e.  _V )
229, 21syl5eqel 2525 . . 3  |-  ( ph  ->  T  e.  _V )
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 29750 . 2  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
24 dfin4 3587 . . . . . . . . . . 11  |-  ( T  i^i  U )  =  ( T  \  ( T  \  U ) )
25 elssuni 4118 . . . . . . . . . . . . . 14  |-  ( U  e.  J  ->  U  C_ 
U. J )
2618, 25syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  U. J )
2726, 9syl6sseqr 3400 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  T )
28 dfss1 3552 . . . . . . . . . . . 12  |-  ( U 
C_  T  <->  ( T  i^i  U )  =  U )
2927, 28sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( T  i^i  U
)  =  U )
3024, 29syl5eqr 2487 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  ( T  \  U ) )  =  U )
3130, 18eqeltrd 2515 . . . . . . . . 9  |-  ( ph  ->  ( T  \  ( T  \  U ) )  e.  J )
32 cmptop 18898 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  J  e. 
Top )
3310, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
34 difssd 3481 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  C_  T )
359iscld2 18532 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3633, 34, 35syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3731, 36mpbird 232 . . . . . . . 8  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
38 cmpcld 18905 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
3910, 37, 38syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
409cmpsub 18903 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4133, 34, 40syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4239, 41mpbid 210 . . . . . 6  |-  ( ph  ->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) )
43 ssrab2 3434 . . . . . . . 8  |-  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  C_  J
448, 43eqsstri 3383 . . . . . . 7  |-  W  C_  J
458, 10rabexd 4441 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
46 elpwg 3865 . . . . . . . 8  |-  ( W  e.  _V  ->  ( W  e.  ~P J  <->  W 
C_  J ) )
4745, 46syl 16 . . . . . . 7  |-  ( ph  ->  ( W  e.  ~P J 
<->  W  C_  J )
)
4844, 47mpbiri 233 . . . . . 6  |-  ( ph  ->  W  e.  ~P J
)
49 unieq 4096 . . . . . . . . 9  |-  ( c  =  W  ->  U. c  =  U. W )
5049sseq2d 3381 . . . . . . . 8  |-  ( c  =  W  ->  (
( T  \  U
)  C_  U. c  <->  ( T  \  U ) 
C_  U. W ) )
51 pweq 3860 . . . . . . . . . 10  |-  ( c  =  W  ->  ~P c  =  ~P W
)
5251ineq1d 3548 . . . . . . . . 9  |-  ( c  =  W  ->  ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin ) )
5352rexeqdv 2922 . . . . . . . 8  |-  ( c  =  W  ->  ( E. u  e.  ( ~P c  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u
) )
5450, 53imbi12d 320 . . . . . . 7  |-  ( c  =  W  ->  (
( ( T  \  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i  Fin ) ( T  \  U )  C_  U. u
)  <->  ( ( T 
\  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) ) )
5554rspccva 3069 . . . . . 6  |-  ( ( A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J )  -> 
( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5642, 48, 55syl2anc 656 . . . . 5  |-  ( ph  ->  ( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5756imp 429 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
)
58 df-rex 2719 . . . 4  |-  ( E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u ) )
5957, 58sylib 196 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U )  C_  U. u
) )
60 elin 3536 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  <->  ( u  e.  ~P W  /\  u  e.  Fin ) )
6160simprbi 461 . . . . . . 7  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  Fin )
6261ad2antrl 722 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  Fin )
6360simplbi 457 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  ~P W )
6463ad2antrl 722 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ~P W )
6564elpwid 3867 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  C_  W )
66 simprr 751 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
6762, 65, 663jca 1163 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
6867ex 434 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
)  ->  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) ) )
6968eximdv 1681 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u )  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) ) )
7059, 69mpd 15 . 2  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) )
7123, 70mpdan 663 1  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591   F/wnf 1594    e. wcel 1761   F/_wnfc 2564    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   U.cuni 4088   class class class wbr 4289    e. cmpt 4347   ran crn 4837   ` cfv 5415  (class class class)co 6090   Fincfn 7306   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415   (,)cioo 11296   ↾t crest 14355   topGenctg 14372   Topctop 18398   Clsdccld 18520    Cn ccn 18728   Compccmp 18889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-cn 18731  df-cnp 18732  df-cmp 18890  df-tx 19035  df-hmeo 19228  df-xms 19795  df-ms 19796  df-tms 19797
This theorem is referenced by:  stoweidlem53  29757
  Copyright terms: Public domain W3C validator