Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem44 Structured version   Visualization version   Unicode version

Theorem stoweidlem44 38017
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem44.1  |-  F/ j
ph
stoweidlem44.2  |-  F/ t
ph
stoweidlem44.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem44.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem44.5  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem44.6  |-  ( ph  ->  M  e.  NN )
stoweidlem44.7  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem44.8  |-  ( ph  ->  A. t  e.  ( T  \  U ) E. j  e.  ( 1 ... M ) 0  <  ( ( G `  j ) `
 t ) )
stoweidlem44.9  |-  T  = 
U. J
stoweidlem44.10  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
stoweidlem44.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem44.12  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem44.13  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem44.14  |-  ( ph  ->  Z  e.  T )
Assertion
Ref Expression
stoweidlem44  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g,
i, t, G    f,
j, i, t, G    A, f, g    f, M, g, i, t    T, f, g, i, t    ph, f,
g, i    h, i,
j, t, G    A, h    T, h, j    h, Z, i, t    x, j, M, t    U, j   
t, p, T    A, p    P, p    U, p    Z, p    x, A    x, T    ph, x
Allowed substitution hints:    ph( t, h, j, p)    A( t,
i, j)    P( x, t, f, g, h, i, j)    Q( x, t, f, g, h, i, j, p)    U( x, t, f, g, h, i)    G( x, p)    J( x, t, f, g, h, i, j, p)    K( x, t, f, g, h, i, j, p)    M( h, p)    Z( x, f, g, j)

Proof of Theorem stoweidlem44
StepHypRef Expression
1 stoweidlem44.2 . . . 4  |-  F/ t
ph
2 stoweidlem44.5 . . . 4  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
3 eqid 2471 . . . 4  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
4 eqid 2471 . . . 4  |-  ( t  e.  T  |->  ( 1  /  M ) )  =  ( t  e.  T  |->  ( 1  /  M ) )
5 stoweidlem44.6 . . . 4  |-  ( ph  ->  M  e.  NN )
65nnrecred 10677 . . . 4  |-  ( ph  ->  ( 1  /  M
)  e.  RR )
7 stoweidlem44.7 . . . . 5  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
8 stoweidlem44.4 . . . . . 6  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
9 ssrab2 3500 . . . . . 6  |-  { h  e.  A  |  (
( h `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) ) }  C_  A
108, 9eqsstri 3448 . . . . 5  |-  Q  C_  A
11 fss 5749 . . . . 5  |-  ( ( G : ( 1 ... M ) --> Q  /\  Q  C_  A
)  ->  G :
( 1 ... M
) --> A )
127, 10, 11sylancl 675 . . . 4  |-  ( ph  ->  G : ( 1 ... M ) --> A )
13 stoweidlem44.11 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
14 stoweidlem44.12 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
15 stoweidlem44.13 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
16 stoweidlem44.3 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
17 stoweidlem44.9 . . . . 5  |-  T  = 
U. J
18 eqid 2471 . . . . 5  |-  ( J  Cn  K )  =  ( J  Cn  K
)
19 stoweidlem44.10 . . . . . 6  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
2019sselda 3418 . . . . 5  |-  ( (
ph  /\  f  e.  A )  ->  f  e.  ( J  Cn  K
) )
2116, 17, 18, 20fcnre 37409 . . . 4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
221, 2, 3, 4, 5, 6, 12, 13, 14, 15, 21stoweidlem32 38005 . . 3  |-  ( ph  ->  P  e.  A )
238, 2, 5, 7, 21stoweidlem38 38011 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <_  ( P `  t )  /\  ( P `  t )  <_  1 ) )
2423ex 441 . . . . 5  |-  ( ph  ->  ( t  e.  T  ->  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) ) )
251, 24ralrimi 2800 . . . 4  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
26 stoweidlem44.14 . . . . 5  |-  ( ph  ->  Z  e.  T )
278, 2, 5, 7, 21, 26stoweidlem37 38010 . . . 4  |-  ( ph  ->  ( P `  Z
)  =  0 )
28 stoweidlem44.1 . . . . . . . . 9  |-  F/ j
ph
29 nfv 1769 . . . . . . . . 9  |-  F/ j  t  e.  ( T 
\  U )
3028, 29nfan 2031 . . . . . . . 8  |-  F/ j ( ph  /\  t  e.  ( T  \  U
) )
31 nfv 1769 . . . . . . . 8  |-  F/ j 0  <  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
32 stoweidlem44.8 . . . . . . . . . 10  |-  ( ph  ->  A. t  e.  ( T  \  U ) E. j  e.  ( 1 ... M ) 0  <  ( ( G `  j ) `
 t ) )
3332r19.21bi 2776 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( T  \  U ) )  ->  E. j  e.  ( 1 ... M
) 0  <  (
( G `  j
) `  t )
)
34 df-rex 2762 . . . . . . . . 9  |-  ( E. j  e.  ( 1 ... M ) 0  <  ( ( G `
 j ) `  t )  <->  E. j
( j  e.  ( 1 ... M )  /\  0  <  (
( G `  j
) `  t )
) )
3533, 34sylib 201 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  \  U ) )  ->  E. j
( j  e.  ( 1 ... M )  /\  0  <  (
( G `  j
) `  t )
) )
366ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( 1  /  M )  e.  RR )
37 simpll 768 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ph )
38 eldifi 3544 . . . . . . . . . . 11  |-  ( t  e.  ( T  \  U )  ->  t  e.  T )
3938ad2antlr 741 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  t  e.  T
)
40 fzfid 12224 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  (
1 ... M )  e. 
Fin )
418, 7, 21stoweidlem15 37987 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  t  e.  T )  ->  (
( ( G `  i ) `  t
)  e.  RR  /\  0  <_  ( ( G `
 i ) `  t )  /\  (
( G `  i
) `  t )  <_  1 ) )
4241an32s 821 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( ( G `  i ) `  t
)  e.  RR  /\  0  <_  ( ( G `
 i ) `  t )  /\  (
( G `  i
) `  t )  <_  1 ) )
4342simp1d 1042 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  RR )
4440, 43fsumrecl 13877 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  e.  RR )
4537, 39, 44syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
)  e.  RR )
465nnred 10646 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
475nngt0d 10675 . . . . . . . . . . 11  |-  ( ph  ->  0  <  M )
4846, 47recgt0d 10563 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  /  M ) )
4948ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  (
1  /  M ) )
50 0red 9662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  e.  RR )
51 simprl 772 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  j  e.  ( 1 ... M ) )
5237, 51, 393jca 1210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( ph  /\  j  e.  ( 1 ... M )  /\  t  e.  T )
)
53 snfi 7668 . . . . . . . . . . . . . . 15  |-  { j }  e.  Fin
5453a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  { j }  e.  Fin )
55 simpl1 1033 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  ph )
56 simpl3 1035 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  t  e.  T
)
57 elsni 3985 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  { j }  ->  i  =  j )
5857adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  i  =  j )
59 simpl2 1034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  j  e.  ( 1 ... M ) )
6058, 59eqeltrd 2549 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  i  e.  ( 1 ... M ) )
6155, 56, 60, 43syl21anc 1291 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  { j } )  ->  ( ( G `
 i ) `  t )  e.  RR )
6254, 61fsumrecl 13877 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  sum_ i  e.  { j }  (
( G `  i
) `  t )  e.  RR )
6352, 62syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  sum_ i  e.  {
j }  ( ( G `  i ) `
 t )  e.  RR )
6450, 63readdcld 9688 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( 0  + 
sum_ i  e.  {
j }  ( ( G `  i ) `
 t ) )  e.  RR )
65 fzfi 12223 . . . . . . . . . . . . . . 15  |-  ( 1 ... M )  e. 
Fin
66 diffi 7821 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... M )  e.  Fin  ->  (
( 1 ... M
)  \  { j } )  e.  Fin )
6765, 66mp1i 13 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  T )  ->  (
( 1 ... M
)  \  { j } )  e.  Fin )
68 eldifi 3544 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( ( 1 ... M )  \  { j } )  ->  i  e.  ( 1 ... M ) )
6968, 43sylan2 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  ( ( G `
 i ) `  t )  e.  RR )
7067, 69fsumrecl 13877 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( ( 1 ... M )  \  {
j } ) ( ( G `  i
) `  t )  e.  RR )
7137, 39, 70syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  sum_ i  e.  ( ( 1 ... M
)  \  { j } ) ( ( G `  i ) `
 t )  e.  RR )
7271, 63readdcld 9688 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( sum_ i  e.  ( ( 1 ... M )  \  {
j } ) ( ( G `  i
) `  t )  +  sum_ i  e.  {
j }  ( ( G `  i ) `
 t ) )  e.  RR )
73 00id 9826 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
74 simprr 774 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  (
( G `  j
) `  t )
)
758, 7, 21stoweidlem15 37987 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  t  e.  T )  ->  (
( ( G `  j ) `  t
)  e.  RR  /\  0  <_  ( ( G `
 j ) `  t )  /\  (
( G `  j
) `  t )  <_  1 ) )
7675simp1d 1042 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  t  e.  T )  ->  (
( G `  j
) `  t )  e.  RR )
7737, 51, 39, 76syl21anc 1291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( ( G `
 j ) `  t )  e.  RR )
7877recnd 9687 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( ( G `
 j ) `  t )  e.  CC )
79 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( i  =  j  ->  ( G `  i )  =  ( G `  j ) )
8079fveq1d 5881 . . . . . . . . . . . . . . . 16  |-  ( i  =  j  ->  (
( G `  i
) `  t )  =  ( ( G `
 j ) `  t ) )
8180sumsn 13884 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( 1 ... M )  /\  ( ( G `  j ) `  t
)  e.  CC )  ->  sum_ i  e.  {
j }  ( ( G `  i ) `
 t )  =  ( ( G `  j ) `  t
) )
8251, 78, 81syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  sum_ i  e.  {
j }  ( ( G `  i ) `
 t )  =  ( ( G `  j ) `  t
) )
8374, 82breqtrrd 4422 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  sum_ i  e.  { j }  ( ( G `
 i ) `  t ) )
8450, 63, 50, 83ltadd2dd 9811 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( 0  +  0 )  <  (
0  +  sum_ i  e.  { j }  (
( G `  i
) `  t )
) )
8573, 84syl5eqbrr 4430 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  (
0  +  sum_ i  e.  { j }  (
( G `  i
) `  t )
) )
86 0red 9662 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  0  e.  RR )
87703adant2 1049 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  sum_ i  e.  ( ( 1 ... M )  \  {
j } ) ( ( G `  i
) `  t )  e.  RR )
88 simpll 768 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  ph )
8968adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  i  e.  ( 1 ... M ) )
90 simplr 770 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  t  e.  T
)
9188, 89, 90, 41syl21anc 1291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  ( ( ( G `  i ) `
 t )  e.  RR  /\  0  <_ 
( ( G `  i ) `  t
)  /\  ( ( G `  i ) `  t )  <_  1
) )
9291simp2d 1043 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( ( 1 ... M )  \  {
j } ) )  ->  0  <_  (
( G `  i
) `  t )
)
9367, 69, 92fsumge0 13932 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  T )  ->  0  <_ 
sum_ i  e.  ( ( 1 ... M
)  \  { j } ) ( ( G `  i ) `
 t ) )
94933adant2 1049 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  0  <_ 
sum_ i  e.  ( ( 1 ... M
)  \  { j } ) ( ( G `  i ) `
 t ) )
9586, 87, 62, 94leadd1dd 10248 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
0  +  sum_ i  e.  { j }  (
( G `  i
) `  t )
)  <_  ( sum_ i  e.  ( (
1 ... M )  \  { j } ) ( ( G `  i ) `  t
)  +  sum_ i  e.  { j }  (
( G `  i
) `  t )
) )
9652, 95syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  ( 0  + 
sum_ i  e.  {
j }  ( ( G `  i ) `
 t ) )  <_  ( sum_ i  e.  ( ( 1 ... M )  \  {
j } ) ( ( G `  i
) `  t )  +  sum_ i  e.  {
j }  ( ( G `  i ) `
 t ) ) )
9750, 64, 72, 85, 96ltletrd 9812 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  ( sum_ i  e.  ( ( 1 ... M ) 
\  { j } ) ( ( G `
 i ) `  t )  +  sum_ i  e.  { j }  ( ( G `
 i ) `  t ) ) )
98 eq0 3738 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1 ... M )  \  {
j } )  i^i 
{ j } )  =  (/)  <->  A. x  -.  x  e.  ( ( ( 1 ... M )  \  { j } )  i^i  { j } ) )
99 eldifn 3545 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( 1 ... M )  \  { j } )  ->  -.  x  e.  { j } )
100 imnan 429 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( ( 1 ... M ) 
\  { j } )  ->  -.  x  e.  { j } )  <->  -.  ( x  e.  ( ( 1 ... M
)  \  { j } )  /\  x  e.  { j } ) )
10199, 100mpbi 213 . . . . . . . . . . . . . . 15  |-  -.  (
x  e.  ( ( 1 ... M ) 
\  { j } )  /\  x  e. 
{ j } )
102 elin 3608 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( ( 1 ... M ) 
\  { j } )  i^i  { j } )  <->  ( x  e.  ( ( 1 ... M )  \  {
j } )  /\  x  e.  { j } ) )
103101, 102mtbir 306 . . . . . . . . . . . . . 14  |-  -.  x  e.  ( ( ( 1 ... M )  \  { j } )  i^i  { j } )
10498, 103mpgbir 1681 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... M
)  \  { j } )  i^i  {
j } )  =  (/)
105104a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( ( 1 ... M )  \  {
j } )  i^i 
{ j } )  =  (/) )
106 undif1 3833 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... M
)  \  { j } )  u.  {
j } )  =  ( ( 1 ... M )  u.  {
j } )
107 snssi 4107 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... M )  ->  { j }  C_  ( 1 ... M ) )
1081073ad2ant2 1052 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  { j }  C_  ( 1 ... M ) )
109 ssequn2 3598 . . . . . . . . . . . . . 14  |-  ( { j }  C_  (
1 ... M )  <->  ( (
1 ... M )  u. 
{ j } )  =  ( 1 ... M ) )
110108, 109sylib 201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( 1 ... M
)  u.  { j } )  =  ( 1 ... M ) )
111106, 110syl5req 2518 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
1 ... M )  =  ( ( ( 1 ... M )  \  { j } )  u.  { j } ) )
112 fzfid 12224 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
1 ... M )  e. 
Fin )
113433adantl2 1187 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  RR )
114113recnd 9687 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  CC )
115105, 111, 112, 114fsumsplit 13883 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
)  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  =  (
sum_ i  e.  ( ( 1 ... M
)  \  { j } ) ( ( G `  i ) `
 t )  + 
sum_ i  e.  {
j }  ( ( G `  i ) `
 t ) ) )
11652, 115syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
)  =  ( sum_ i  e.  ( (
1 ... M )  \  { j } ) ( ( G `  i ) `  t
)  +  sum_ i  e.  { j }  (
( G `  i
) `  t )
) )
11797, 116breqtrrd 4422 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
11836, 45, 49, 117mulgt0d 9807 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( T  \  U
) )  /\  (
j  e.  ( 1 ... M )  /\  0  <  ( ( G `
 j ) `  t ) ) )  ->  0  <  (
( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) ) )
11930, 31, 35, 118exlimdd 2089 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  \  U ) )  ->  0  <  ( ( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) ) )
1208, 2, 5, 7, 21stoweidlem30 38003 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( P `  t )  =  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) ) )
12138, 120sylan2 482 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  \  U ) )  ->  ( P `  t )  =  ( ( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) ) )
122119, 121breqtrrd 4422 . . . . . 6  |-  ( (
ph  /\  t  e.  ( T  \  U ) )  ->  0  <  ( P `  t ) )
123122ex 441 . . . . 5  |-  ( ph  ->  ( t  e.  ( T  \  U )  ->  0  <  ( P `  t )
) )
1241, 123ralrimi 2800 . . . 4  |-  ( ph  ->  A. t  e.  ( T  \  U ) 0  <  ( P `
 t ) )
12525, 27, 1243jca 1210 . . 3  |-  ( ph  ->  ( A. t  e.  T  ( 0  <_ 
( P `  t
)  /\  ( P `  t )  <_  1
)  /\  ( P `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  ( P `  t )
) )
126 eleq1 2537 . . . . . 6  |-  ( p  =  P  ->  (
p  e.  A  <->  P  e.  A ) )
127 nfmpt1 4485 . . . . . . . . . 10  |-  F/_ t
( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
1282, 127nfcxfr 2610 . . . . . . . . 9  |-  F/_ t P
129128nfeq2 2627 . . . . . . . 8  |-  F/ t  p  =  P
130 fveq1 5878 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p `  t )  =  ( P `  t ) )
131130breq2d 4407 . . . . . . . . 9  |-  ( p  =  P  ->  (
0  <_  ( p `  t )  <->  0  <_  ( P `  t ) ) )
132130breq1d 4405 . . . . . . . . 9  |-  ( p  =  P  ->  (
( p `  t
)  <_  1  <->  ( P `  t )  <_  1
) )
133131, 132anbi12d 725 . . . . . . . 8  |-  ( p  =  P  ->  (
( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  <-> 
( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) ) )
134129, 133ralbid 2826 . . . . . . 7  |-  ( p  =  P  ->  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) ) )
135 fveq1 5878 . . . . . . . 8  |-  ( p  =  P  ->  (
p `  Z )  =  ( P `  Z ) )
136135eqeq1d 2473 . . . . . . 7  |-  ( p  =  P  ->  (
( p `  Z
)  =  0  <->  ( P `  Z )  =  0 ) )
137130breq2d 4407 . . . . . . . 8  |-  ( p  =  P  ->  (
0  <  ( p `  t )  <->  0  <  ( P `  t ) ) )
138129, 137ralbid 2826 . . . . . . 7  |-  ( p  =  P  ->  ( A. t  e.  ( T  \  U ) 0  <  ( p `  t )  <->  A. t  e.  ( T  \  U
) 0  <  ( P `  t )
) )
139134, 136, 1383anbi123d 1365 . . . . . 6  |-  ( p  =  P  ->  (
( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  <->  ( A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t )  <_  1 )  /\  ( P `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( P `  t
) ) ) )
140126, 139anbi12d 725 . . . . 5  |-  ( p  =  P  ->  (
( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )  <->  ( P  e.  A  /\  ( A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 )  /\  ( P `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  ( P `  t )
) ) ) )
141140spcegv 3121 . . . 4  |-  ( P  e.  A  ->  (
( P  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( P `  t
)  /\  ( P `  t )  <_  1
)  /\  ( P `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  ( P `  t )
) )  ->  E. p
( p  e.  A  /\  ( A. t  e.  T  ( 0  <_ 
( p `  t
)  /\  ( p `  t )  <_  1
)  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) ) )
14222, 141syl 17 . . 3  |-  ( ph  ->  ( ( P  e.  A  /\  ( A. t  e.  T  (
0  <_  ( P `  t )  /\  ( P `  t )  <_  1 )  /\  ( P `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( P `  t
) ) )  ->  E. p ( p  e.  A  /\  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) ) ) )
14322, 125, 142mp2and 693 . 2  |-  ( ph  ->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
144 df-rex 2762 . 2  |-  ( E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
)  <->  E. p ( p  e.  A  /\  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
145143, 144sylibr 217 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671   F/wnf 1675    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631   (,)cioo 11660   ...cfz 11810   sum_csu 13829   topGenctg 15414    Cn ccn 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ioo 11664  df-ico 11666  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320
This theorem is referenced by:  stoweidlem53  38026
  Copyright terms: Public domain W3C validator