Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   Unicode version

Theorem stoweidlem43 38016
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1  |-  F/ g
ph
stoweidlem43.2  |-  F/ t
ph
stoweidlem43.3  |-  F/_ h Q
stoweidlem43.4  |-  K  =  ( topGen `  ran  (,) )
stoweidlem43.5  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem43.6  |-  T  = 
U. J
stoweidlem43.7  |-  ( ph  ->  J  e.  Comp )
stoweidlem43.8  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
stoweidlem43.9  |-  ( (
ph  /\  f  e.  A  /\  l  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( l `  t ) ) )  e.  A )
stoweidlem43.10  |-  ( (
ph  /\  f  e.  A  /\  l  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( l `  t ) ) )  e.  A )
stoweidlem43.11  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem43.12  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. g  e.  A  ( g `  r
)  =/=  ( g `
 t ) )
stoweidlem43.13  |-  ( ph  ->  U  e.  J )
stoweidlem43.14  |-  ( ph  ->  Z  e.  U )
stoweidlem43.15  |-  ( ph  ->  S  e.  ( T 
\  U ) )
Assertion
Ref Expression
stoweidlem43  |-  ( ph  ->  E. h ( h  e.  Q  /\  0  <  ( h `  S
) ) )
Distinct variable groups:    f, g,
l, t, A    f, h, T, t    T, l   
f, r, g, t, A    x, f, g, t, A    Q, f    S, f, g, l, t   
f, Z, g, l, t    ph, f, l    A, h    S, h    h, Z    T, r    S, r    ph, r    x, T    x, S    x, Z    ph, x
Allowed substitution hints:    ph( t, g, h)    Q( x, t, g, h, r, l)    T( g)    U( x, t, f, g, h, r, l)    J( x, t, f, g, h, r, l)    K( x, t, f, g, h, r, l)    Z( r)

Proof of Theorem stoweidlem43
Dummy variables  s 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3  |-  F/ g
ph
2 nfv 1769 . . 3  |-  F/ g E. f ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 )
3 stoweidlem43.15 . . . . . 6  |-  ( ph  ->  S  e.  ( T 
\  U ) )
43eldifad 3402 . . . . 5  |-  ( ph  ->  S  e.  T )
5 stoweidlem43.14 . . . . . . 7  |-  ( ph  ->  Z  e.  U )
6 stoweidlem43.13 . . . . . . 7  |-  ( ph  ->  U  e.  J )
7 elunii 4195 . . . . . . 7  |-  ( ( Z  e.  U  /\  U  e.  J )  ->  Z  e.  U. J
)
85, 6, 7syl2anc 673 . . . . . 6  |-  ( ph  ->  Z  e.  U. J
)
9 stoweidlem43.6 . . . . . 6  |-  T  = 
U. J
108, 9syl6eleqr 2560 . . . . 5  |-  ( ph  ->  Z  e.  T )
113eldifbd 3403 . . . . . . 7  |-  ( ph  ->  -.  S  e.  U
)
12 nelne2 2740 . . . . . . 7  |-  ( ( Z  e.  U  /\  -.  S  e.  U
)  ->  Z  =/=  S )
135, 11, 12syl2anc 673 . . . . . 6  |-  ( ph  ->  Z  =/=  S )
1413necomd 2698 . . . . 5  |-  ( ph  ->  S  =/=  Z )
154, 10, 143jca 1210 . . . 4  |-  ( ph  ->  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z
) )
16 simpr2 1037 . . . . . 6  |-  ( (
ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/= 
Z ) )  ->  Z  e.  T )
17 stoweidlem43.2 . . . . . . . . 9  |-  F/ t
ph
18 nfv 1769 . . . . . . . . 9  |-  F/ t ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z
)
1917, 18nfan 2031 . . . . . . . 8  |-  F/ t ( ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z ) )
20 nfv 1769 . . . . . . . 8  |-  F/ t E. g  e.  A  ( g `  S
)  =/=  ( g `
 Z )
2119, 20nfim 2023 . . . . . . 7  |-  F/ t ( ( ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z
) )  ->  E. g  e.  A  ( g `  S )  =/=  (
g `  Z )
)
22 eleq1 2537 . . . . . . . . . 10  |-  ( t  =  Z  ->  (
t  e.  T  <->  Z  e.  T ) )
23 neeq2 2706 . . . . . . . . . 10  |-  ( t  =  Z  ->  ( S  =/=  t  <->  S  =/=  Z ) )
2422, 233anbi23d 1368 . . . . . . . . 9  |-  ( t  =  Z  ->  (
( S  e.  T  /\  t  e.  T  /\  S  =/=  t
)  <->  ( S  e.  T  /\  Z  e.  T  /\  S  =/= 
Z ) ) )
2524anbi2d 718 . . . . . . . 8  |-  ( t  =  Z  ->  (
( ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) )  <-> 
( ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z ) ) ) )
26 fveq2 5879 . . . . . . . . . 10  |-  ( t  =  Z  ->  (
g `  t )  =  ( g `  Z ) )
2726neeq2d 2703 . . . . . . . . 9  |-  ( t  =  Z  ->  (
( g `  S
)  =/=  ( g `
 t )  <->  ( g `  S )  =/=  (
g `  Z )
) )
2827rexbidv 2892 . . . . . . . 8  |-  ( t  =  Z  ->  ( E. g  e.  A  ( g `  S
)  =/=  ( g `
 t )  <->  E. g  e.  A  ( g `  S )  =/=  (
g `  Z )
) )
2925, 28imbi12d 327 . . . . . . 7  |-  ( t  =  Z  ->  (
( ( ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t
) )  ->  E. g  e.  A  ( g `  S )  =/=  (
g `  t )
)  <->  ( ( ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z
) )  ->  E. g  e.  A  ( g `  S )  =/=  (
g `  Z )
) ) )
30 simpr1 1036 . . . . . . . 8  |-  ( (
ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) )  ->  S  e.  T )
31 eleq1 2537 . . . . . . . . . . . 12  |-  ( r  =  S  ->  (
r  e.  T  <->  S  e.  T ) )
32 neeq1 2705 . . . . . . . . . . . 12  |-  ( r  =  S  ->  (
r  =/=  t  <->  S  =/=  t ) )
3331, 323anbi13d 1367 . . . . . . . . . . 11  |-  ( r  =  S  ->  (
( r  e.  T  /\  t  e.  T  /\  r  =/=  t
)  <->  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) ) )
3433anbi2d 718 . . . . . . . . . 10  |-  ( r  =  S  ->  (
( ph  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  <-> 
( ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) ) ) )
35 fveq2 5879 . . . . . . . . . . . 12  |-  ( r  =  S  ->  (
g `  r )  =  ( g `  S ) )
3635neeq1d 2702 . . . . . . . . . . 11  |-  ( r  =  S  ->  (
( g `  r
)  =/=  ( g `
 t )  <->  ( g `  S )  =/=  (
g `  t )
) )
3736rexbidv 2892 . . . . . . . . . 10  |-  ( r  =  S  ->  ( E. g  e.  A  ( g `  r
)  =/=  ( g `
 t )  <->  E. g  e.  A  ( g `  S )  =/=  (
g `  t )
) )
3834, 37imbi12d 327 . . . . . . . . 9  |-  ( r  =  S  ->  (
( ( ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t
) )  ->  E. g  e.  A  ( g `  r )  =/=  (
g `  t )
)  <->  ( ( ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t
) )  ->  E. g  e.  A  ( g `  S )  =/=  (
g `  t )
) ) )
39 stoweidlem43.12 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. g  e.  A  ( g `  r
)  =/=  ( g `
 t ) )
4039a1i 11 . . . . . . . . 9  |-  ( r  e.  T  ->  (
( ph  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. g  e.  A  ( g `  r
)  =/=  ( g `
 t ) ) )
4138, 40vtoclga 3099 . . . . . . . 8  |-  ( S  e.  T  ->  (
( ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) )  ->  E. g  e.  A  ( g `  S
)  =/=  ( g `
 t ) ) )
4230, 41mpcom 36 . . . . . . 7  |-  ( (
ph  /\  ( S  e.  T  /\  t  e.  T  /\  S  =/=  t ) )  ->  E. g  e.  A  ( g `  S
)  =/=  ( g `
 t ) )
4321, 29, 42vtoclg1f 3092 . . . . . 6  |-  ( Z  e.  T  ->  (
( ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/=  Z ) )  ->  E. g  e.  A  ( g `  S
)  =/=  ( g `
 Z ) ) )
4416, 43mpcom 36 . . . . 5  |-  ( (
ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/= 
Z ) )  ->  E. g  e.  A  ( g `  S
)  =/=  ( g `
 Z ) )
45 df-rex 2762 . . . . 5  |-  ( E. g  e.  A  ( g `  S )  =/=  ( g `  Z )  <->  E. g
( g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) ) )
4644, 45sylib 201 . . . 4  |-  ( (
ph  /\  ( S  e.  T  /\  Z  e.  T  /\  S  =/= 
Z ) )  ->  E. g ( g  e.  A  /\  ( g `
 S )  =/=  ( g `  Z
) ) )
4715, 46mpdan 681 . . 3  |-  ( ph  ->  E. g ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )
48 nfv 1769 . . . . . 6  |-  F/ t ( g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) )
4917, 48nfan 2031 . . . . 5  |-  F/ t ( ph  /\  (
g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) ) )
50 nfcv 2612 . . . . 5  |-  F/_ t
g
51 eqid 2471 . . . . 5  |-  ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) )  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )
52 stoweidlem43.4 . . . . . . 7  |-  K  =  ( topGen `  ran  (,) )
53 eqid 2471 . . . . . . 7  |-  ( J  Cn  K )  =  ( J  Cn  K
)
54 stoweidlem43.8 . . . . . . . 8  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
5554sselda 3418 . . . . . . 7  |-  ( (
ph  /\  f  e.  A )  ->  f  e.  ( J  Cn  K
) )
5652, 9, 53, 55fcnre 37409 . . . . . 6  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
5756adantlr 729 . . . . 5  |-  ( ( ( ph  /\  (
g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) ) )  /\  f  e.  A )  ->  f : T --> RR )
58 stoweidlem43.9 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  l  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( l `  t ) ) )  e.  A )
59583adant1r 1285 . . . . 5  |-  ( ( ( ph  /\  (
g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) ) )  /\  f  e.  A  /\  l  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( l `
 t ) ) )  e.  A )
60 stoweidlem43.11 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
6160adantlr 729 . . . . 5  |-  ( ( ( ph  /\  (
g  e.  A  /\  ( g `  S
)  =/=  ( g `
 Z ) ) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
624adantr 472 . . . . 5  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  ->  S  e.  T )
6310adantr 472 . . . . 5  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  ->  Z  e.  T )
64 simprl 772 . . . . 5  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  -> 
g  e.  A )
65 simprr 774 . . . . 5  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  -> 
( g `  S
)  =/=  ( g `
 Z ) )
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 37995 . . . 4  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  -> 
( ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  e.  A  /\  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  S )  =/=  ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) ) `
 Z )  /\  ( ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) ) `  Z )  =  0 ) )
67 eleq1 2537 . . . . . . . 8  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( f  e.  A  <->  ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) )  e.  A ) )
68 fveq1 5878 . . . . . . . . 9  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( f `  S
)  =  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  S ) )
69 fveq1 5878 . . . . . . . . 9  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( f `  Z
)  =  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z ) )
7068, 69neeq12d 2704 . . . . . . . 8  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( ( f `  S )  =/=  (
f `  Z )  <->  ( ( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  S
)  =/=  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z ) ) )
7169eqeq1d 2473 . . . . . . . 8  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( ( f `  Z )  =  0  <-> 
( ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) ) `  Z )  =  0 ) )
7267, 70, 713anbi123d 1365 . . . . . . 7  |-  ( f  =  ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) )  -> 
( ( f  e.  A  /\  ( f `
 S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 )  <->  ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) )  e.  A  /\  (
( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  S
)  =/=  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z )  /\  ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) ) `
 Z )  =  0 ) ) )
7372spcegv 3121 . . . . . 6  |-  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) )  e.  A  -> 
( ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) )  e.  A  /\  (
( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  S
)  =/=  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z )  /\  ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) ) `
 Z )  =  0 )  ->  E. f
( f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 ) ) )
74733ad2ant1 1051 . . . . 5  |-  ( ( ( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) )  e.  A  /\  ( ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) ) `  S )  =/=  (
( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  Z
)  /\  ( (
t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z )  =  0 )  -> 
( ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) )  e.  A  /\  (
( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  S
)  =/=  ( ( t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z )  /\  ( ( t  e.  T  |->  ( ( g `  t )  -  ( g `  Z ) ) ) `
 Z )  =  0 )  ->  E. f
( f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 ) ) )
7574pm2.43i 48 . . . 4  |-  ( ( ( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) )  e.  A  /\  ( ( t  e.  T  |->  ( ( g `
 t )  -  ( g `  Z
) ) ) `  S )  =/=  (
( t  e.  T  |->  ( ( g `  t )  -  (
g `  Z )
) ) `  Z
)  /\  ( (
t  e.  T  |->  ( ( g `  t
)  -  ( g `
 Z ) ) ) `  Z )  =  0 )  ->  E. f ( f  e.  A  /\  ( f `
 S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )
7666, 75syl 17 . . 3  |-  ( (
ph  /\  ( g  e.  A  /\  (
g `  S )  =/=  ( g `  Z
) ) )  ->  E. f ( f  e.  A  /\  ( f `
 S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )
771, 2, 47, 76exlimdd 2089 . 2  |-  ( ph  ->  E. f ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )
78 stoweidlem43.3 . . . . 5  |-  F/_ h Q
79 nfmpt1 4485 . . . . 5  |-  F/_ t
( t  e.  T  |->  ( ( ( s  e.  T  |->  ( ( f `  s )  x.  ( f `  s ) ) ) `
 t )  /  sup ( ran  ( s  e.  T  |->  ( ( f `  s )  x.  ( f `  s ) ) ) ,  RR ,  <  ) ) )
80 nfcv 2612 . . . . 5  |-  F/_ t
f
81 nfcv 2612 . . . . 5  |-  F/_ t
( s  e.  T  |->  ( ( f `  s )  x.  (
f `  s )
) )
82 nfv 1769 . . . . . 6  |-  F/ t ( f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 )
8317, 82nfan 2031 . . . . 5  |-  F/ t ( ph  /\  (
f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 ) )
84 stoweidlem43.5 . . . . 5  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
85 fveq2 5879 . . . . . . 7  |-  ( s  =  t  ->  (
f `  s )  =  ( f `  t ) )
8685, 85oveq12d 6326 . . . . . 6  |-  ( s  =  t  ->  (
( f `  s
)  x.  ( f `
 s ) )  =  ( ( f `
 t )  x.  ( f `  t
) ) )
8786cbvmptv 4488 . . . . 5  |-  ( s  e.  T  |->  ( ( f `  s )  x.  ( f `  s ) ) )  =  ( t  e.  T  |->  ( ( f `
 t )  x.  ( f `  t
) ) )
88 eqid 2471 . . . . 5  |-  sup ( ran  ( s  e.  T  |->  ( ( f `  s )  x.  (
f `  s )
) ) ,  RR ,  <  )  =  sup ( ran  ( s  e.  T  |->  ( ( f `
 s )  x.  ( f `  s
) ) ) ,  RR ,  <  )
89 eqid 2471 . . . . 5  |-  ( t  e.  T  |->  ( ( ( s  e.  T  |->  ( ( f `  s )  x.  (
f `  s )
) ) `  t
)  /  sup ( ran  ( s  e.  T  |->  ( ( f `  s )  x.  (
f `  s )
) ) ,  RR ,  <  ) ) )  =  ( t  e.  T  |->  ( ( ( s  e.  T  |->  ( ( f `  s
)  x.  ( f `
 s ) ) ) `  t )  /  sup ( ran  ( s  e.  T  |->  ( ( f `  s )  x.  (
f `  s )
) ) ,  RR ,  <  ) ) )
90 stoweidlem43.7 . . . . . 6  |-  ( ph  ->  J  e.  Comp )
9190adantr 472 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  J  e.  Comp )
9254adantr 472 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  A  C_  ( J  Cn  K
) )
93 eleq1 2537 . . . . . . . . 9  |-  ( f  =  k  ->  (
f  e.  A  <->  k  e.  A ) )
94933anbi2d 1370 . . . . . . . 8  |-  ( f  =  k  ->  (
( ph  /\  f  e.  A  /\  l  e.  A )  <->  ( ph  /\  k  e.  A  /\  l  e.  A )
) )
95 fveq1 5878 . . . . . . . . . . 11  |-  ( f  =  k  ->  (
f `  t )  =  ( k `  t ) )
9695oveq1d 6323 . . . . . . . . . 10  |-  ( f  =  k  ->  (
( f `  t
)  x.  ( l `
 t ) )  =  ( ( k `
 t )  x.  ( l `  t
) ) )
9796mpteq2dv 4483 . . . . . . . . 9  |-  ( f  =  k  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( l `
 t ) ) )  =  ( t  e.  T  |->  ( ( k `  t )  x.  ( l `  t ) ) ) )
9897eleq1d 2533 . . . . . . . 8  |-  ( f  =  k  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
l `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( k `  t
)  x.  ( l `
 t ) ) )  e.  A ) )
9994, 98imbi12d 327 . . . . . . 7  |-  ( f  =  k  ->  (
( ( ph  /\  f  e.  A  /\  l  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
l `  t )
) )  e.  A
)  <->  ( ( ph  /\  k  e.  A  /\  l  e.  A )  ->  ( t  e.  T  |->  ( ( k `  t )  x.  (
l `  t )
) )  e.  A
) ) )
100 stoweidlem43.10 . . . . . . 7  |-  ( (
ph  /\  f  e.  A  /\  l  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( l `  t ) ) )  e.  A )
10199, 100chvarv 2120 . . . . . 6  |-  ( (
ph  /\  k  e.  A  /\  l  e.  A
)  ->  ( t  e.  T  |->  ( ( k `  t )  x.  ( l `  t ) ) )  e.  A )
1021013adant1r 1285 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 ) )  /\  k  e.  A  /\  l  e.  A )  ->  (
t  e.  T  |->  ( ( k `  t
)  x.  ( l `
 t ) ) )  e.  A )
10360adantlr 729 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 ) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
1044adantr 472 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  S  e.  T )
10510adantr 472 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  Z  e.  T )
106 simpr1 1036 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  f  e.  A )
107 simpr2 1037 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  (
f `  S )  =/=  ( f `  Z
) )
108 simpr3 1038 . . . . 5  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  (
f `  Z )  =  0 )
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 38009 . . . 4  |-  ( (
ph  /\  ( f  e.  A  /\  (
f `  S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 ) )  ->  E. h
( h  e.  Q  /\  0  <  ( h `
 S ) ) )
110109ex 441 . . 3  |-  ( ph  ->  ( ( f  e.  A  /\  ( f `
 S )  =/=  ( f `  Z
)  /\  ( f `  Z )  =  0 )  ->  E. h
( h  e.  Q  /\  0  <  ( h `
 S ) ) ) )
111110exlimdv 1787 . 2  |-  ( ph  ->  ( E. f ( f  e.  A  /\  ( f `  S
)  =/=  ( f `
 Z )  /\  ( f `  Z
)  =  0 )  ->  E. h ( h  e.  Q  /\  0  <  ( h `  S
) ) ) )
11277, 111mpd 15 1  |-  ( ph  ->  E. h ( h  e.  Q  /\  0  <  ( h `  S
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671   F/wnf 1675    e. wcel 1904   F/_wnfc 2599    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760    \ cdif 3387    C_ wss 3390   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   -->wf 5585   ` cfv 5589  (class class class)co 6308   supcsup 7972   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   (,)cioo 11660   topGenctg 15414    Cn ccn 20317   Compccmp 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cn 20320  df-cnp 20321  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415
This theorem is referenced by:  stoweidlem46  38019
  Copyright terms: Public domain W3C validator