Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   Unicode version

Theorem stoweidlem38 37909
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem38.2  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem38.3  |-  ( ph  ->  M  e.  NN )
stoweidlem38.4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem38.5  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem38  |-  ( (
ph  /\  S  e.  T )  ->  (
0  <_  ( P `  S )  /\  ( P `  S )  <_  1 ) )
Distinct variable groups:    f, i, T    A, f    f, G    ph, f, i    h, i, t, T    A, h    h, G, t    h, Z   
i, M, t    S, i
Allowed substitution hints:    ph( t, h)    A( t, i)    P( t, f, h, i)    Q( t, f, h, i)    S( t, f, h)    G( i)    M( f, h)    Z( t,
f, i)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
21nnrecred 10662 . . . . 5  |-  ( ph  ->  ( 1  /  M
)  e.  RR )
32adantr 467 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
1  /  M )  e.  RR )
4 fzfid 12193 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  (
1 ... M )  e. 
Fin )
5 stoweidlem38.1 . . . . . . . 8  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
6 stoweidlem38.4 . . . . . . . 8  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
7 stoweidlem38.5 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
85, 6, 7stoweidlem15 37885 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( ( G `  i ) `  S
)  e.  RR  /\  0  <_  ( ( G `
 i ) `  S )  /\  (
( G `  i
) `  S )  <_  1 ) )
98simp1d 1021 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  i
) `  S )  e.  RR )
109an32s 814 . . . . 5  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  S )  e.  RR )
114, 10fsumrecl 13812 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  e.  RR )
12 1red 9663 . . . . . 6  |-  ( ph  ->  1  e.  RR )
13 0le1 10144 . . . . . . 7  |-  0  <_  1
1413a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  1 )
151nnred 10631 . . . . . 6  |-  ( ph  ->  M  e.  RR )
161nngt0d 10660 . . . . . 6  |-  ( ph  ->  0  <  M )
17 divge0 10481 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( M  e.  RR  /\  0  < 
M ) )  -> 
0  <_  ( 1  /  M ) )
1812, 14, 15, 16, 17syl22anc 1270 . . . . 5  |-  ( ph  ->  0  <_  ( 1  /  M ) )
1918adantr 467 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( 1  /  M
) )
208simp2d 1022 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  0  <_  ( ( G `  i ) `  S
) )
2120an32s 814 . . . . 5  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  0  <_  ( ( G `  i ) `  S
) )
224, 10, 21fsumge0 13867 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  0  <_ 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) )
233, 11, 19, 22mulge0d 10197 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  S )
) )
24 stoweidlem38.2 . . . 4  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
255, 24, 1, 6, 7stoweidlem30 37901 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  =  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) ) )
2623, 25breqtrrd 4432 . 2  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( P `  S
) )
27 1red 9663 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  1  e.  RR )
288simp3d 1023 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  i
) `  S )  <_  1 )
2928an32s 814 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  S )  <_  1 )
304, 10, 27, 29fsumle 13871 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  sum_ i  e.  ( 1 ... M
) 1 )
31 fzfid 12193 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
32 ax-1cn 9602 . . . . . . . . 9  |-  1  e.  CC
33 fsumconst 13863 . . . . . . . . 9  |-  ( ( ( 1 ... M
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ i  e.  ( 1 ... M ) 1  =  ( (
# `  ( 1 ... M ) )  x.  1 ) )
3431, 32, 33sylancl 669 . . . . . . . 8  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) 1  =  ( (
# `  ( 1 ... M ) )  x.  1 ) )
351nnnn0d 10932 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
36 hashfz1 12536 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
3735, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
3837oveq1d 6310 . . . . . . . 8  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  x.  1 )  =  ( M  x.  1 ) )
391nncnd 10632 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
4039mulid1d 9665 . . . . . . . 8  |-  ( ph  ->  ( M  x.  1 )  =  M )
4134, 38, 403eqtrd 2491 . . . . . . 7  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) 1  =  M )
4241adantr 467 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) 1  =  M )
4330, 42breqtrd 4430 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  M
)
4415adantr 467 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  M  e.  RR )
45 1red 9663 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  1  e.  RR )
46 0lt1 10143 . . . . . . . 8  |-  0  <  1
4746a1i 11 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  0  <  1 )
4815, 16jca 535 . . . . . . . 8  |-  ( ph  ->  ( M  e.  RR  /\  0  <  M ) )
4948adantr 467 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  ( M  e.  RR  /\  0  <  M ) )
50 divgt0 10480 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( M  e.  RR  /\  0  < 
M ) )  -> 
0  <  ( 1  /  M ) )
5145, 47, 49, 50syl21anc 1268 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  0  <  ( 1  /  M
) )
52 lemul2 10465 . . . . . 6  |-  ( (
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
)  e.  RR  /\  M  e.  RR  /\  (
( 1  /  M
)  e.  RR  /\  0  <  ( 1  /  M ) ) )  ->  ( sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  M  <->  ( ( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S ) )  <_ 
( ( 1  /  M )  x.  M
) ) )
5311, 44, 3, 51, 52syl112anc 1273 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  ( sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  S )  <_  M  <->  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) )  <_  (
( 1  /  M
)  x.  M ) ) )
5443, 53mpbid 214 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S ) )  <_ 
( ( 1  /  M )  x.  M
) )
5525, 54eqbrtrd 4426 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  <_  ( ( 1  /  M )  x.  M
) )
5632a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  CC )
571nnne0d 10661 . . . . . 6  |-  ( ph  ->  M  =/=  0 )
5856, 39, 573jca 1189 . . . . 5  |-  ( ph  ->  ( 1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 ) )
5958adantr 467 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 ) )
60 divcan1 10286 . . . 4  |-  ( ( 1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 )  ->  (
( 1  /  M
)  x.  M )  =  1 )
6159, 60syl 17 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  (
( 1  /  M
)  x.  M )  =  1 )
6255, 61breqtrd 4430 . 2  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  <_  1 )
6326, 62jca 535 1  |-  ( (
ph  /\  S  e.  T )  ->  (
0  <_  ( P `  S )  /\  ( P `  S )  <_  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   {crab 2743   class class class wbr 4405    |-> cmpt 4464   -->wf 5581   ` cfv 5585  (class class class)co 6295   Fincfn 7574   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    x. cmul 9549    < clt 9680    <_ cle 9681    / cdiv 10276   NNcn 10616   NN0cn0 10876   ...cfz 11791   #chash 12522   sum_csu 13764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-oi 8030  df-card 8378  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-ico 11648  df-fz 11792  df-fzo 11923  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-clim 13564  df-sum 13765
This theorem is referenced by:  stoweidlem44  37915
  Copyright terms: Public domain W3C validator