Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Unicode version

Theorem stoweidlem38 29859
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem38.2  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem38.3  |-  ( ph  ->  M  e.  NN )
stoweidlem38.4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem38.5  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem38  |-  ( (
ph  /\  S  e.  T )  ->  (
0  <_  ( P `  S )  /\  ( P `  S )  <_  1 ) )
Distinct variable groups:    f, i, T    A, f    f, G    ph, f, i    h, i, t, T    A, h    h, G, t    h, Z   
i, M, t    S, i
Allowed substitution hints:    ph( t, h)    A( t, i)    P( t, f, h, i)    Q( t, f, h, i)    S( t, f, h)    G( i)    M( f, h)    Z( t,
f, i)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
21nnrecred 10388 . . . . 5  |-  ( ph  ->  ( 1  /  M
)  e.  RR )
32adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
1  /  M )  e.  RR )
4 fzfid 11816 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  (
1 ... M )  e. 
Fin )
5 stoweidlem38.1 . . . . . . . 8  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
6 stoweidlem38.4 . . . . . . . 8  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
7 stoweidlem38.5 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
85, 6, 7stoweidlem15 29836 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( ( G `  i ) `  S
)  e.  RR  /\  0  <_  ( ( G `
 i ) `  S )  /\  (
( G `  i
) `  S )  <_  1 ) )
98simp1d 1000 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  i
) `  S )  e.  RR )
109an32s 802 . . . . 5  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  S )  e.  RR )
114, 10fsumrecl 13232 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  e.  RR )
12 1red 9422 . . . . . 6  |-  ( ph  ->  1  e.  RR )
13 0le1 9884 . . . . . . 7  |-  0  <_  1
1413a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  1 )
151nnred 10358 . . . . . 6  |-  ( ph  ->  M  e.  RR )
161nngt0d 10386 . . . . . 6  |-  ( ph  ->  0  <  M )
17 divge0 10219 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( M  e.  RR  /\  0  < 
M ) )  -> 
0  <_  ( 1  /  M ) )
1812, 14, 15, 16, 17syl22anc 1219 . . . . 5  |-  ( ph  ->  0  <_  ( 1  /  M ) )
1918adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( 1  /  M
) )
208simp2d 1001 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  0  <_  ( ( G `  i ) `  S
) )
2120an32s 802 . . . . 5  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  0  <_  ( ( G `  i ) `  S
) )
224, 10, 21fsumge0 13279 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  0  <_ 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) )
233, 11, 19, 22mulge0d 9937 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  S )
) )
24 stoweidlem38.2 . . . 4  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
255, 24, 1, 6, 7stoweidlem30 29851 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  =  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) ) )
2623, 25breqtrrd 4339 . 2  |-  ( (
ph  /\  S  e.  T )  ->  0  <_  ( P `  S
) )
27 1red 9422 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  1  e.  RR )
288simp3d 1002 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  i
) `  S )  <_  1 )
2928an32s 802 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  S )  <_  1 )
304, 10, 27, 29fsumle 13283 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  sum_ i  e.  ( 1 ... M
) 1 )
31 fzfid 11816 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
32 ax-1cn 9361 . . . . . . . . 9  |-  1  e.  CC
33 fsumconst 13278 . . . . . . . . 9  |-  ( ( ( 1 ... M
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ i  e.  ( 1 ... M ) 1  =  ( (
# `  ( 1 ... M ) )  x.  1 ) )
3431, 32, 33sylancl 662 . . . . . . . 8  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) 1  =  ( (
# `  ( 1 ... M ) )  x.  1 ) )
351nnnn0d 10657 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
36 hashfz1 12138 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
3735, 36syl 16 . . . . . . . . 9  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
3837oveq1d 6127 . . . . . . . 8  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  x.  1 )  =  ( M  x.  1 ) )
391nncnd 10359 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
4039mulid1d 9424 . . . . . . . 8  |-  ( ph  ->  ( M  x.  1 )  =  M )
4134, 38, 403eqtrd 2479 . . . . . . 7  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) 1  =  M )
4241adantr 465 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) 1  =  M )
4330, 42breqtrd 4337 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  M
)
4415adantr 465 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  M  e.  RR )
45 1red 9422 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  1  e.  RR )
46 0lt1 9883 . . . . . . . 8  |-  0  <  1
4746a1i 11 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  0  <  1 )
4815, 16jca 532 . . . . . . . 8  |-  ( ph  ->  ( M  e.  RR  /\  0  <  M ) )
4948adantr 465 . . . . . . 7  |-  ( (
ph  /\  S  e.  T )  ->  ( M  e.  RR  /\  0  <  M ) )
50 divgt0 10218 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( M  e.  RR  /\  0  < 
M ) )  -> 
0  <  ( 1  /  M ) )
5145, 47, 49, 50syl21anc 1217 . . . . . 6  |-  ( (
ph  /\  S  e.  T )  ->  0  <  ( 1  /  M
) )
52 lemul2 10203 . . . . . 6  |-  ( (
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
)  e.  RR  /\  M  e.  RR  /\  (
( 1  /  M
)  e.  RR  /\  0  <  ( 1  /  M ) ) )  ->  ( sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S )  <_  M  <->  ( ( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S ) )  <_ 
( ( 1  /  M )  x.  M
) ) )
5311, 44, 3, 51, 52syl112anc 1222 . . . . 5  |-  ( (
ph  /\  S  e.  T )  ->  ( sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  S )  <_  M  <->  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  S
) )  <_  (
( 1  /  M
)  x.  M ) ) )
5443, 53mpbid 210 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
( 1  /  M
)  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  S ) )  <_ 
( ( 1  /  M )  x.  M
) )
5525, 54eqbrtrd 4333 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  <_  ( ( 1  /  M )  x.  M
) )
5632a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  CC )
571nnne0d 10387 . . . . . 6  |-  ( ph  ->  M  =/=  0 )
5856, 39, 573jca 1168 . . . . 5  |-  ( ph  ->  ( 1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 ) )
5958adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  T )  ->  (
1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 ) )
60 divcan1 10024 . . . 4  |-  ( ( 1  e.  CC  /\  M  e.  CC  /\  M  =/=  0 )  ->  (
( 1  /  M
)  x.  M )  =  1 )
6159, 60syl 16 . . 3  |-  ( (
ph  /\  S  e.  T )  ->  (
( 1  /  M
)  x.  M )  =  1 )
6255, 61breqtrd 4337 . 2  |-  ( (
ph  /\  S  e.  T )  ->  ( P `  S )  <_  1 )
6326, 62jca 532 1  |-  ( (
ph  /\  S  e.  T )  ->  (
0  <_  ( P `  S )  /\  ( P `  S )  <_  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   {crab 2740   class class class wbr 4313    e. cmpt 4371   -->wf 5435   ` cfv 5439  (class class class)co 6112   Fincfn 7331   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    x. cmul 9308    < clt 9439    <_ cle 9440    / cdiv 10014   NNcn 10343   NN0cn0 10600   ...cfz 11458   #chash 12124   sum_csu 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-ico 11327  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185
This theorem is referenced by:  stoweidlem44  29865
  Copyright terms: Public domain W3C validator