Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Unicode version

Theorem stoweidlem37 29975
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem37.2  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem37.3  |-  ( ph  ->  M  e.  NN )
stoweidlem37.4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem37.5  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem37.6  |-  ( ph  ->  Z  e.  T )
Assertion
Ref Expression
stoweidlem37  |-  ( ph  ->  ( P `  Z
)  =  0 )
Distinct variable groups:    f, i, T    A, f    f, G    ph, f, i    h, i, t, T    A, h    h, G, t    h, Z, i, t    i, M, t
Allowed substitution hints:    ph( t, h)    A( t, i)    P( t, f, h, i)    Q( t, f, h, i)    G( i)    M( f, h)    Z( f)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3  |-  ( ph  ->  Z  e.  T )
2 stoweidlem37.1 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 stoweidlem37.2 . . . 4  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
4 stoweidlem37.3 . . . 4  |-  ( ph  ->  M  e.  NN )
5 stoweidlem37.4 . . . 4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
6 stoweidlem37.5 . . . 4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
72, 3, 4, 5, 6stoweidlem30 29968 . . 3  |-  ( (
ph  /\  Z  e.  T )  ->  ( P `  Z )  =  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
) ) )
81, 7mpdan 668 . 2  |-  ( ph  ->  ( P `  Z
)  =  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
) ) )
95fnvinran 29879 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  Q )
10 fveq1 5793 . . . . . . . . . . 11  |-  ( h  =  ( G `  i )  ->  (
h `  Z )  =  ( ( G `
 i ) `  Z ) )
1110eqeq1d 2454 . . . . . . . . . 10  |-  ( h  =  ( G `  i )  ->  (
( h `  Z
)  =  0  <->  (
( G `  i
) `  Z )  =  0 ) )
12 fveq1 5793 . . . . . . . . . . . . 13  |-  ( h  =  ( G `  i )  ->  (
h `  t )  =  ( ( G `
 i ) `  t ) )
1312breq2d 4407 . . . . . . . . . . . 12  |-  ( h  =  ( G `  i )  ->  (
0  <_  ( h `  t )  <->  0  <_  ( ( G `  i
) `  t )
) )
1412breq1d 4405 . . . . . . . . . . . 12  |-  ( h  =  ( G `  i )  ->  (
( h `  t
)  <_  1  <->  ( ( G `  i ) `  t )  <_  1
) )
1513, 14anbi12d 710 . . . . . . . . . . 11  |-  ( h  =  ( G `  i )  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
1615ralbidv 2843 . . . . . . . . . 10  |-  ( h  =  ( G `  i )  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
1711, 16anbi12d 710 . . . . . . . . 9  |-  ( h  =  ( G `  i )  ->  (
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )  <->  ( (
( G `  i
) `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( ( G `  i ) `  t )  /\  (
( G `  i
) `  t )  <_  1 ) ) ) )
1817, 2elrab2 3220 . . . . . . . 8  |-  ( ( G `  i )  e.  Q  <->  ( ( G `  i )  e.  A  /\  (
( ( G `  i ) `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) ) )
199, 18sylib 196 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
)  e.  A  /\  ( ( ( G `
 i ) `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( ( G `  i ) `  t
)  /\  ( ( G `  i ) `  t )  <_  1
) ) ) )
2019simprd 463 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( ( G `  i ) `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
2120simpld 459 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  Z )  =  0 )
2221sumeq2dv 13293 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
)  =  sum_ i  e.  ( 1 ... M
) 0 )
23 fzfi 11906 . . . . 5  |-  ( 1 ... M )  e. 
Fin
24 olc 384 . . . . 5  |-  ( ( 1 ... M )  e.  Fin  ->  (
( 1 ... M
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... M )  e. 
Fin ) )
25 sumz 13312 . . . . 5  |-  ( ( ( 1 ... M
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... M )  e. 
Fin )  ->  sum_ i  e.  ( 1 ... M
) 0  =  0 )
2623, 24, 25mp2b 10 . . . 4  |-  sum_ i  e.  ( 1 ... M
) 0  =  0
2722, 26syl6eq 2509 . . 3  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
)  =  0 )
2827oveq2d 6211 . 2  |-  ( ph  ->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  Z )
)  =  ( ( 1  /  M )  x.  0 ) )
294nncnd 10444 . . . 4  |-  ( ph  ->  M  e.  CC )
304nnne0d 10472 . . . 4  |-  ( ph  ->  M  =/=  0 )
3129, 30reccld 10206 . . 3  |-  ( ph  ->  ( 1  /  M
)  e.  CC )
3231mul01d 9674 . 2  |-  ( ph  ->  ( ( 1  /  M )  x.  0 )  =  0 )
338, 28, 323eqtrd 2497 1  |-  ( ph  ->  ( P `  Z
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   {crab 2800    C_ wss 3431   class class class wbr 4395    |-> cmpt 4453   -->wf 5517   ` cfv 5521  (class class class)co 6195   Fincfn 7415   RRcr 9387   0cc0 9388   1c1 9389    x. cmul 9393    <_ cle 9525    / cdiv 10099   NNcn 10428   ZZ>=cuz 10967   ...cfz 11549   sum_csu 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-sup 7797  df-oi 7830  df-card 8215  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-n0 10686  df-z 10753  df-uz 10968  df-rp 11098  df-fz 11550  df-fzo 11661  df-seq 11919  df-exp 11978  df-hash 12216  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-clim 13079  df-sum 13277
This theorem is referenced by:  stoweidlem44  29982
  Copyright terms: Public domain W3C validator