Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Unicode version

Theorem stoweidlem37 31337
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem37.2  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem37.3  |-  ( ph  ->  M  e.  NN )
stoweidlem37.4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem37.5  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem37.6  |-  ( ph  ->  Z  e.  T )
Assertion
Ref Expression
stoweidlem37  |-  ( ph  ->  ( P `  Z
)  =  0 )
Distinct variable groups:    f, i, T    A, f    f, G    ph, f, i    h, i, t, T    A, h    h, G, t    h, Z, i, t    i, M, t
Allowed substitution hints:    ph( t, h)    A( t, i)    P( t, f, h, i)    Q( t, f, h, i)    G( i)    M( f, h)    Z( f)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3  |-  ( ph  ->  Z  e.  T )
2 stoweidlem37.1 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 stoweidlem37.2 . . . 4  |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
4 stoweidlem37.3 . . . 4  |-  ( ph  ->  M  e.  NN )
5 stoweidlem37.4 . . . 4  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
6 stoweidlem37.5 . . . 4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
72, 3, 4, 5, 6stoweidlem30 31330 . . 3  |-  ( (
ph  /\  Z  e.  T )  ->  ( P `  Z )  =  ( ( 1  /  M )  x. 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
) ) )
81, 7mpdan 668 . 2  |-  ( ph  ->  ( P `  Z
)  =  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
) ) )
95fnvinran 30967 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  Q )
10 fveq1 5863 . . . . . . . . . . 11  |-  ( h  =  ( G `  i )  ->  (
h `  Z )  =  ( ( G `
 i ) `  Z ) )
1110eqeq1d 2469 . . . . . . . . . 10  |-  ( h  =  ( G `  i )  ->  (
( h `  Z
)  =  0  <->  (
( G `  i
) `  Z )  =  0 ) )
12 fveq1 5863 . . . . . . . . . . . . 13  |-  ( h  =  ( G `  i )  ->  (
h `  t )  =  ( ( G `
 i ) `  t ) )
1312breq2d 4459 . . . . . . . . . . . 12  |-  ( h  =  ( G `  i )  ->  (
0  <_  ( h `  t )  <->  0  <_  ( ( G `  i
) `  t )
) )
1412breq1d 4457 . . . . . . . . . . . 12  |-  ( h  =  ( G `  i )  ->  (
( h `  t
)  <_  1  <->  ( ( G `  i ) `  t )  <_  1
) )
1513, 14anbi12d 710 . . . . . . . . . . 11  |-  ( h  =  ( G `  i )  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
1615ralbidv 2903 . . . . . . . . . 10  |-  ( h  =  ( G `  i )  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
1711, 16anbi12d 710 . . . . . . . . 9  |-  ( h  =  ( G `  i )  ->  (
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )  <->  ( (
( G `  i
) `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( ( G `  i ) `  t )  /\  (
( G `  i
) `  t )  <_  1 ) ) ) )
1817, 2elrab2 3263 . . . . . . . 8  |-  ( ( G `  i )  e.  Q  <->  ( ( G `  i )  e.  A  /\  (
( ( G `  i ) `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) ) )
199, 18sylib 196 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
)  e.  A  /\  ( ( ( G `
 i ) `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( ( G `  i ) `  t
)  /\  ( ( G `  i ) `  t )  <_  1
) ) ) )
2019simprd 463 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( ( G `  i ) `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
( G `  i
) `  t )  /\  ( ( G `  i ) `  t
)  <_  1 ) ) )
2120simpld 459 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  Z )  =  0 )
2221sumeq2dv 13484 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
)  =  sum_ i  e.  ( 1 ... M
) 0 )
23 fzfi 12046 . . . . 5  |-  ( 1 ... M )  e. 
Fin
24 olc 384 . . . . 5  |-  ( ( 1 ... M )  e.  Fin  ->  (
( 1 ... M
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... M )  e. 
Fin ) )
25 sumz 13503 . . . . 5  |-  ( ( ( 1 ... M
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... M )  e. 
Fin )  ->  sum_ i  e.  ( 1 ... M
) 0  =  0 )
2623, 24, 25mp2b 10 . . . 4  |-  sum_ i  e.  ( 1 ... M
) 0  =  0
2722, 26syl6eq 2524 . . 3  |-  ( ph  -> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  Z
)  =  0 )
2827oveq2d 6298 . 2  |-  ( ph  ->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  Z )
)  =  ( ( 1  /  M )  x.  0 ) )
294nncnd 10548 . . . 4  |-  ( ph  ->  M  e.  CC )
304nnne0d 10576 . . . 4  |-  ( ph  ->  M  =/=  0 )
3129, 30reccld 10309 . . 3  |-  ( ph  ->  ( 1  /  M
)  e.  CC )
3231mul01d 9774 . 2  |-  ( ph  ->  ( ( 1  /  M )  x.  0 )  =  0 )
338, 28, 323eqtrd 2512 1  |-  ( ph  ->  ( P `  Z
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   -->wf 5582   ` cfv 5586  (class class class)co 6282   Fincfn 7513   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    <_ cle 9625    / cdiv 10202   NNcn 10532   ZZ>=cuz 11078   ...cfz 11668   sum_csu 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468
This theorem is referenced by:  stoweidlem44  31344
  Copyright terms: Public domain W3C validator