Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem28 Structured version   Unicode version

Theorem stoweidlem28 37771
Description: There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 
T  \  U. Here  d is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem28.1  |-  F/_ t U
stoweidlem28.2  |-  F/ t
ph
stoweidlem28.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem28.4  |-  T  = 
U. J
stoweidlem28.5  |-  ( ph  ->  J  e.  Comp )
stoweidlem28.6  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
stoweidlem28.7  |-  ( ph  ->  A. t  e.  ( T  \  U ) 0  <  ( P `
 t ) )
stoweidlem28.8  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
stoweidlem28  |-  ( ph  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  ( P `  t )
) )
Distinct variable groups:    t, d, P    T, d, t    U, d    t, J
Allowed substitution hints:    ph( t, d)    U( t)    J( d)    K( t, d)

Proof of Theorem stoweidlem28
Dummy variables  c  x  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 10774 . . . . 5  |-  ( 1  /  2 )  e.  RR
2 halfgt0 10776 . . . . 5  |-  0  <  ( 1  /  2
)
31, 2elrpii 11251 . . . 4  |-  ( 1  /  2 )  e.  RR+
43a1i 11 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( 1  / 
2 )  e.  RR+ )
5 halflt1 10777 . . . 4  |-  ( 1  /  2 )  <  1
65a1i 11 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  ( 1  / 
2 )  <  1
)
7 nfcv 2564 . . . . . . 7  |-  F/_ t T
8 stoweidlem28.1 . . . . . . 7  |-  F/_ t U
97, 8nfdif 3524 . . . . . 6  |-  F/_ t
( T  \  U
)
109nfeq1 2577 . . . . 5  |-  F/ t ( T  \  U
)  =  (/)
1110rzalf 37254 . . . 4  |-  ( ( T  \  U )  =  (/)  ->  A. t  e.  ( T  \  U
) ( 1  / 
2 )  <_  ( P `  t )
)
1211adantl 467 . . 3  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  A. t  e.  ( T  \  U ) ( 1  /  2
)  <_  ( P `  t ) )
13 ovex 6272 . . . 4  |-  ( 1  /  2 )  e. 
_V
14 eleq1 2489 . . . . 5  |-  ( d  =  ( 1  / 
2 )  ->  (
d  e.  RR+  <->  ( 1  /  2 )  e.  RR+ ) )
15 breq1 4364 . . . . 5  |-  ( d  =  ( 1  / 
2 )  ->  (
d  <  1  <->  ( 1  /  2 )  <  1 ) )
16 breq1 4364 . . . . . 6  |-  ( d  =  ( 1  / 
2 )  ->  (
d  <_  ( P `  t )  <->  ( 1  /  2 )  <_ 
( P `  t
) ) )
1716ralbidv 2799 . . . . 5  |-  ( d  =  ( 1  / 
2 )  ->  ( A. t  e.  ( T  \  U ) d  <_  ( P `  t )  <->  A. t  e.  ( T  \  U
) ( 1  / 
2 )  <_  ( P `  t )
) )
1814, 15, 173anbi123d 1335 . . . 4  |-  ( d  =  ( 1  / 
2 )  ->  (
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( P `  t ) )  <->  ( (
1  /  2 )  e.  RR+  /\  (
1  /  2 )  <  1  /\  A. t  e.  ( T  \  U ) ( 1  /  2 )  <_ 
( P `  t
) ) ) )
1913, 18spcev 3111 . . 3  |-  ( ( ( 1  /  2
)  e.  RR+  /\  (
1  /  2 )  <  1  /\  A. t  e.  ( T  \  U ) ( 1  /  2 )  <_ 
( P `  t
) )  ->  E. d
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( P `  t ) ) )
204, 6, 12, 19syl3anc 1264 . 2  |-  ( (
ph  /\  ( T  \  U )  =  (/) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  ( P `  t )
) )
21 simplll 766 . . . 4  |-  ( ( ( ( ph  /\  -.  ( T  \  U
)  =  (/) )  /\  x  e.  ( T  \  U ) )  /\  A. t  e.  ( T 
\  U ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) )  ->  ph )
22 simplr 760 . . . 4  |-  ( ( ( ( ph  /\  -.  ( T  \  U
)  =  (/) )  /\  x  e.  ( T  \  U ) )  /\  A. t  e.  ( T 
\  U ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) )  ->  x  e.  ( T  \  U ) )
23 simpr 462 . . . 4  |-  ( ( ( ( ph  /\  -.  ( T  \  U
)  =  (/) )  /\  x  e.  ( T  \  U ) )  /\  A. t  e.  ( T 
\  U ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) )  ->  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )
24 stoweidlem28.3 . . . . . . . . . . 11  |-  K  =  ( topGen `  ran  (,) )
25 stoweidlem28.4 . . . . . . . . . . 11  |-  T  = 
U. J
26 eqid 2423 . . . . . . . . . . 11  |-  ( J  Cn  K )  =  ( J  Cn  K
)
27 stoweidlem28.6 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
2824, 25, 26, 27fcnre 37262 . . . . . . . . . 10  |-  ( ph  ->  P : T --> RR )
2928adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( T  \  U ) )  ->  P : T
--> RR )
30 eldifi 3525 . . . . . . . . . 10  |-  ( x  e.  ( T  \  U )  ->  x  e.  T )
3130adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( T  \  U ) )  ->  x  e.  T )
3229, 31ffvelrnd 5977 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( T  \  U ) )  ->  ( P `  x )  e.  RR )
33 stoweidlem28.7 . . . . . . . . 9  |-  ( ph  ->  A. t  e.  ( T  \  U ) 0  <  ( P `
 t ) )
34 nfcv 2564 . . . . . . . . . . . 12  |-  F/_ x
( T  \  U
)
35 nfv 1755 . . . . . . . . . . . 12  |-  F/ x
0  <  ( P `  t )
36 nfv 1755 . . . . . . . . . . . 12  |-  F/ t 0  <  ( P `
 x )
37 fveq2 5820 . . . . . . . . . . . . 13  |-  ( t  =  x  ->  ( P `  t )  =  ( P `  x ) )
3837breq2d 4373 . . . . . . . . . . . 12  |-  ( t  =  x  ->  (
0  <  ( P `  t )  <->  0  <  ( P `  x ) ) )
399, 34, 35, 36, 38cbvralf 2985 . . . . . . . . . . 11  |-  ( A. t  e.  ( T  \  U ) 0  < 
( P `  t
)  <->  A. x  e.  ( T  \  U ) 0  <  ( P `
 x ) )
4039biimpi 197 . . . . . . . . . 10  |-  ( A. t  e.  ( T  \  U ) 0  < 
( P `  t
)  ->  A. x  e.  ( T  \  U
) 0  <  ( P `  x )
)
4140r19.21bi 2729 . . . . . . . . 9  |-  ( ( A. t  e.  ( T  \  U ) 0  <  ( P `
 t )  /\  x  e.  ( T  \  U ) )  -> 
0  <  ( P `  x ) )
4233, 41sylan 473 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( T  \  U ) )  ->  0  <  ( P `  x ) )
4332, 42elrpd 11284 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( T  \  U ) )  ->  ( P `  x )  e.  RR+ )
44433adant3 1025 . . . . . 6  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  -> 
( P `  x
)  e.  RR+ )
45 stoweidlem28.2 . . . . . . . 8  |-  F/ t
ph
469nfcri 2558 . . . . . . . 8  |-  F/ t  x  e.  ( T 
\  U )
47 nfra1 2741 . . . . . . . 8  |-  F/ t A. t  e.  ( T  \  U ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
)
4845, 46, 47nf3an 1990 . . . . . . 7  |-  F/ t ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )
49 rspa 2727 . . . . . . . . . 10  |-  ( ( A. t  e.  ( T  \  U ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
)  /\  t  e.  ( T  \  U ) )  ->  ( ( P  |`  ( T  \  U ) ) `  x )  <_  (
( P  |`  ( T  \  U ) ) `
 t ) )
50493ad2antl3 1169 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  t  e.  ( T  \  U ) )  -> 
( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
) )
51 simpl2 1009 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  t  e.  ( T  \  U ) )  ->  x  e.  ( T  \  U ) )
52 fvres 5834 . . . . . . . . . 10  |-  ( x  e.  ( T  \  U )  ->  (
( P  |`  ( T  \  U ) ) `
 x )  =  ( P `  x
) )
5351, 52syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  t  e.  ( T  \  U ) )  -> 
( ( P  |`  ( T  \  U ) ) `  x )  =  ( P `  x ) )
54 fvres 5834 . . . . . . . . . 10  |-  ( t  e.  ( T  \  U )  ->  (
( P  |`  ( T  \  U ) ) `
 t )  =  ( P `  t
) )
5554adantl 467 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  t  e.  ( T  \  U ) )  -> 
( ( P  |`  ( T  \  U ) ) `  t )  =  ( P `  t ) )
5650, 53, 553brtr3d 4391 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  t  e.  ( T  \  U ) )  -> 
( P `  x
)  <_  ( P `  t ) )
5756ex 435 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  -> 
( t  e.  ( T  \  U )  ->  ( P `  x )  <_  ( P `  t )
) )
5848, 57ralrimi 2760 . . . . . 6  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  ->  A. t  e.  ( T  \  U ) ( P `  x )  <_  ( P `  t ) )
59 eleq1 2489 . . . . . . . . 9  |-  ( c  =  ( P `  x )  ->  (
c  e.  RR+  <->  ( P `  x )  e.  RR+ ) )
60 breq1 4364 . . . . . . . . . 10  |-  ( c  =  ( P `  x )  ->  (
c  <_  ( P `  t )  <->  ( P `  x )  <_  ( P `  t )
) )
6160ralbidv 2799 . . . . . . . . 9  |-  ( c  =  ( P `  x )  ->  ( A. t  e.  ( T  \  U ) c  <_  ( P `  t )  <->  A. t  e.  ( T  \  U
) ( P `  x )  <_  ( P `  t )
) )
6259, 61anbi12d 715 . . . . . . . 8  |-  ( c  =  ( P `  x )  ->  (
( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  <->  ( ( P `  x )  e.  RR+  /\  A. t  e.  ( T  \  U
) ( P `  x )  <_  ( P `  t )
) ) )
6362spcegv 3105 . . . . . . 7  |-  ( ( P `  x )  e.  RR+  ->  ( ( ( P `  x
)  e.  RR+  /\  A. t  e.  ( T  \  U ) ( P `
 x )  <_ 
( P `  t
) )  ->  E. c
( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) ) )
6444, 63syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  -> 
( ( ( P `
 x )  e.  RR+  /\  A. t  e.  ( T  \  U
) ( P `  x )  <_  ( P `  t )
)  ->  E. c
( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) ) )
6544, 58, 64mp2and 683 . . . . 5  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  ->  E. c ( c  e.  RR+  /\  A. t  e.  ( T  \  U
) c  <_  ( P `  t )
) )
66 simpl1 1008 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  ( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) )  ->  ph )
67 simprl 762 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  ( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) )  ->  c  e.  RR+ )
68 simprr 764 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  ( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) )  ->  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )
69 nfv 1755 . . . . . . . 8  |-  F/ t  c  e.  RR+
70 nfra1 2741 . . . . . . . 8  |-  F/ t A. t  e.  ( T  \  U ) c  <_  ( P `  t )
7145, 69, 70nf3an 1990 . . . . . . 7  |-  F/ t ( ph  /\  c  e.  RR+  /\  A. t  e.  ( T  \  U
) c  <_  ( P `  t )
)
72 eqid 2423 . . . . . . 7  |-  if ( c  <_  ( 1  /  2 ) ,  c ,  ( 1  /  2 ) )  =  if ( c  <_  ( 1  / 
2 ) ,  c ,  ( 1  / 
2 ) )
73283ad2ant1 1026 . . . . . . 7  |-  ( (
ph  /\  c  e.  RR+ 
/\  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  ->  P : T --> RR )
74 difssd 3531 . . . . . . 7  |-  ( (
ph  /\  c  e.  RR+ 
/\  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  -> 
( T  \  U
)  C_  T )
75 simp2 1006 . . . . . . 7  |-  ( (
ph  /\  c  e.  RR+ 
/\  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  -> 
c  e.  RR+ )
76 simp3 1007 . . . . . . 7  |-  ( (
ph  /\  c  e.  RR+ 
/\  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  ->  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )
7771, 72, 73, 74, 75, 76stoweidlem5 37748 . . . . . 6  |-  ( (
ph  /\  c  e.  RR+ 
/\  A. t  e.  ( T  \  U ) c  <_  ( P `  t ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( P `  t ) ) )
7866, 67, 68, 77syl3anc 1264 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( T  \  U
)  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  /\  ( c  e.  RR+  /\ 
A. t  e.  ( T  \  U ) c  <_  ( P `  t ) ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  ( P `  t )
) )
7965, 78exlimddv 1774 . . . 4  |-  ( (
ph  /\  x  e.  ( T  \  U )  /\  A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U ) d  <_  ( P `  t ) ) )
8021, 22, 23, 79syl3anc 1264 . . 3  |-  ( ( ( ( ph  /\  -.  ( T  \  U
)  =  (/) )  /\  x  e.  ( T  \  U ) )  /\  A. t  e.  ( T 
\  U ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) )  ->  E. d
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( P `  t ) ) )
81 eqid 2423 . . . . . 6  |-  U. ( Jt  ( T  \  U ) )  =  U. ( Jt  ( T  \  U ) )
82 stoweidlem28.5 . . . . . . . 8  |-  ( ph  ->  J  e.  Comp )
83 stoweidlem28.8 . . . . . . . . 9  |-  ( ph  ->  U  e.  J )
84 cmptop 20347 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  J  e. 
Top )
8582, 84syl 17 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
86 elssuni 4186 . . . . . . . . . . . 12  |-  ( U  e.  J  ->  U  C_ 
U. J )
8783, 86syl 17 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  U. J )
8887, 25syl6sseqr 3449 . . . . . . . . . 10  |-  ( ph  ->  U  C_  T )
8925isopn2 19984 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  U  C_  T )  -> 
( U  e.  J  <->  ( T  \  U )  e.  ( Clsd `  J
) ) )
9085, 88, 89syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( U  e.  J  <->  ( T  \  U )  e.  ( Clsd `  J
) ) )
9183, 90mpbid 213 . . . . . . . 8  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
92 cmpcld 20354 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
9382, 91, 92syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
9493adantr 466 . . . . . 6  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
9527adantr 466 . . . . . . 7  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  P  e.  ( J  Cn  K
) )
96 difssd 3531 . . . . . . 7  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( T 
\  U )  C_  T )
9725cnrest 20238 . . . . . . 7  |-  ( ( P  e.  ( J  Cn  K )  /\  ( T  \  U ) 
C_  T )  -> 
( P  |`  ( T  \  U ) )  e.  ( ( Jt  ( T  \  U ) )  Cn  K ) )
9895, 96, 97syl2anc 665 . . . . . 6  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( P  |`  ( T  \  U
) )  e.  ( ( Jt  ( T  \  U ) )  Cn  K ) )
99 df-ne 2596 . . . . . . . 8  |-  ( ( T  \  U )  =/=  (/)  <->  -.  ( T  \  U )  =  (/) )
100 difssd 3531 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  C_  T )
10125restuni 20115 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( T  \  U
)  =  U. ( Jt  ( T  \  U ) ) )
10285, 100, 101syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( T  \  U
)  =  U. ( Jt  ( T  \  U ) ) )
103102neeq1d 2655 . . . . . . . 8  |-  ( ph  ->  ( ( T  \  U )  =/=  (/)  <->  U. ( Jt  ( T  \  U ) )  =/=  (/) ) )
10499, 103syl5rbbr 263 . . . . . . 7  |-  ( ph  ->  ( U. ( Jt  ( T  \  U ) )  =/=  (/)  <->  -.  ( T  \  U )  =  (/) ) )
105104biimpar 487 . . . . . 6  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  U. ( Jt  ( T  \  U ) )  =/=  (/) )
10681, 24, 94, 98, 105evth2 21925 . . . . 5  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. x  e.  U. ( Jt  ( T 
\  U ) ) A. s  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  s ) )
107 nfcv 2564 . . . . . . 7  |-  F/_ s U. ( Jt  ( T  \  U ) )
108 nfcv 2564 . . . . . . . . 9  |-  F/_ t J
109 nfcv 2564 . . . . . . . . 9  |-  F/_ tt
110108, 109, 9nfov 6270 . . . . . . . 8  |-  F/_ t
( Jt  ( T  \  U ) )
111110nfuni 4163 . . . . . . 7  |-  F/_ t U. ( Jt  ( T  \  U ) )
112 nfcv 2564 . . . . . . . . . 10  |-  F/_ t P
113112, 9nfres 5064 . . . . . . . . 9  |-  F/_ t
( P  |`  ( T  \  U ) )
114 nfcv 2564 . . . . . . . . 9  |-  F/_ t
x
115113, 114nffv 5827 . . . . . . . 8  |-  F/_ t
( ( P  |`  ( T  \  U ) ) `  x )
116 nfcv 2564 . . . . . . . 8  |-  F/_ t  <_
117 nfcv 2564 . . . . . . . . 9  |-  F/_ t
s
118113, 117nffv 5827 . . . . . . . 8  |-  F/_ t
( ( P  |`  ( T  \  U ) ) `  s )
119115, 116, 118nfbr 4406 . . . . . . 7  |-  F/ t ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  s
)
120 nfv 1755 . . . . . . 7  |-  F/ s ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
)
121 fveq2 5820 . . . . . . . 8  |-  ( s  =  t  ->  (
( P  |`  ( T  \  U ) ) `
 s )  =  ( ( P  |`  ( T  \  U ) ) `  t ) )
122121breq2d 4373 . . . . . . 7  |-  ( s  =  t  ->  (
( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  s
)  <->  ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) ) )
123107, 111, 119, 120, 122cbvralf 2985 . . . . . 6  |-  ( A. s  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  s )  <->  A. t  e.  U. ( Jt  ( T 
\  U ) ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
) )
124123rexbii 2861 . . . . 5  |-  ( E. x  e.  U. ( Jt  ( T  \  U ) ) A. s  e. 
U. ( Jt  ( T 
\  U ) ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  s
)  <->  E. x  e.  U. ( Jt  ( T  \  U ) ) A. t  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )
125106, 124sylib 199 . . . 4  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. x  e.  U. ( Jt  ( T 
\  U ) ) A. t  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) )
1269, 111raleqf 2955 . . . . . . 7  |-  ( ( T  \  U )  =  U. ( Jt  ( T  \  U ) )  ->  ( A. t  e.  ( T  \  U ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  (
( P  |`  ( T  \  U ) ) `
 t )  <->  A. t  e.  U. ( Jt  ( T 
\  U ) ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  ( ( P  |`  ( T  \  U
) ) `  t
) ) )
127126rexeqbi1dv 2968 . . . . . 6  |-  ( ( T  \  U )  =  U. ( Jt  ( T  \  U ) )  ->  ( E. x  e.  ( T  \  U ) A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t )  <->  E. x  e.  U. ( Jt  ( T 
\  U ) ) A. t  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) ) )
128102, 127syl 17 . . . . 5  |-  ( ph  ->  ( E. x  e.  ( T  \  U
) A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t )  <->  E. x  e.  U. ( Jt  ( T 
\  U ) ) A. t  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) ) )
129128adantr 466 . . . 4  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  ( E. x  e.  ( T 
\  U ) A. t  e.  ( T  \  U ) ( ( P  |`  ( T  \  U ) ) `  x )  <_  (
( P  |`  ( T  \  U ) ) `
 t )  <->  E. x  e.  U. ( Jt  ( T 
\  U ) ) A. t  e.  U. ( Jt  ( T  \  U ) ) ( ( P  |`  ( T  \  U ) ) `
 x )  <_ 
( ( P  |`  ( T  \  U ) ) `  t ) ) )
130125, 129mpbird 235 . . 3  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. x  e.  ( T  \  U
) A. t  e.  ( T  \  U
) ( ( P  |`  ( T  \  U
) ) `  x
)  <_  ( ( P  |`  ( T  \  U ) ) `  t ) )
13180, 130r19.29a 2904 . 2  |-  ( (
ph  /\  -.  ( T  \  U )  =  (/) )  ->  E. d
( d  e.  RR+  /\  d  <  1  /\ 
A. t  e.  ( T  \  U ) d  <_  ( P `  t ) ) )
13220, 131pm2.61dan 798 1  |-  ( ph  ->  E. d ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T  \  U
) d  <_  ( P `  t )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1657   F/wnf 1661    e. wcel 1872   F/_wnfc 2551    =/= wne 2594   A.wral 2709   E.wrex 2710    \ cdif 3371    C_ wss 3374   (/)c0 3699   ifcif 3849   U.cuni 4157   class class class wbr 4361   ran crn 4792    |` cres 4793   -->wf 5535   ` cfv 5539  (class class class)co 6244   RRcr 9484   0cc0 9485   1c1 9486    < clt 9621    <_ cle 9622    / cdiv 10215   2c2 10605   RR+crp 11248   (,)cioo 11581   ↾t crest 15257   topGenctg 15274   Topctop 19854   Clsdccld 19968    Cn ccn 20177   Compccmp 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562  ax-pre-sup 9563  ax-mulf 9565
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-iin 4240  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-se 4751  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-isom 5548  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-of 6484  df-om 6646  df-1st 6746  df-2nd 6747  df-supp 6865  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-ixp 7473  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-fsupp 7832  df-fi 7873  df-sup 7904  df-inf 7905  df-oi 7973  df-card 8320  df-cda 8544  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-div 10216  df-nn 10556  df-2 10614  df-3 10615  df-4 10616  df-5 10617  df-6 10618  df-7 10619  df-8 10620  df-9 10621  df-10 10622  df-n0 10816  df-z 10884  df-dec 10998  df-uz 11106  df-q 11211  df-rp 11249  df-xneg 11355  df-xadd 11356  df-xmul 11357  df-ioo 11585  df-icc 11588  df-fz 11731  df-fzo 11862  df-seq 12159  df-exp 12218  df-hash 12461  df-cj 13101  df-re 13102  df-im 13103  df-sqrt 13237  df-abs 13238  df-struct 15061  df-ndx 15062  df-slot 15063  df-base 15064  df-sets 15065  df-ress 15066  df-plusg 15141  df-mulr 15142  df-starv 15143  df-sca 15144  df-vsca 15145  df-ip 15146  df-tset 15147  df-ple 15148  df-ds 15150  df-unif 15151  df-hom 15152  df-cco 15153  df-rest 15259  df-topn 15260  df-0g 15278  df-gsum 15279  df-topgen 15280  df-pt 15281  df-prds 15284  df-xrs 15338  df-qtop 15344  df-imas 15345  df-xps 15348  df-mre 15430  df-mrc 15431  df-acs 15433  df-mgm 16426  df-sgrp 16465  df-mnd 16475  df-submnd 16521  df-mulg 16614  df-cntz 16909  df-cmn 17370  df-psmet 18900  df-xmet 18901  df-met 18902  df-bl 18903  df-mopn 18904  df-cnfld 18909  df-top 19858  df-bases 19859  df-topon 19860  df-topsp 19861  df-cld 19971  df-cn 20180  df-cnp 20181  df-cmp 20339  df-tx 20514  df-hmeo 20707  df-xms 21272  df-ms 21273  df-tms 21274
This theorem is referenced by:  stoweidlem56  37800
  Copyright terms: Public domain W3C validator