Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem23 Unicode version

Theorem stoweidlem23 27442
Description: This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem23.1  |-  F/ t
ph
stoweidlem23.2  |-  F/_ t G
stoweidlem23.3  |-  H  =  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )
stoweidlem23.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem23.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem23.6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem23.7  |-  ( ph  ->  S  e.  T )
stoweidlem23.8  |-  ( ph  ->  Z  e.  T )
stoweidlem23.9  |-  ( ph  ->  G  e.  A )
stoweidlem23.10  |-  ( ph  ->  ( G `  S
)  =/=  ( G `
 Z ) )
Assertion
Ref Expression
stoweidlem23  |-  ( ph  ->  ( H  e.  A  /\  ( H `  S
)  =/=  ( H `
 Z )  /\  ( H `  Z )  =  0 ) )
Distinct variable groups:    f, g,
t, T    A, f,
g    f, G, g    ph, f,
g    g, Z, t    x, t, T    t, S    x, A    x, G    x, Z    ph, x
Allowed substitution hints:    ph( t)    A( t)    S( x, f, g)    G( t)    H( x, t, f, g)    Z( f)

Proof of Theorem stoweidlem23
StepHypRef Expression
1 stoweidlem23.3 . . 3  |-  H  =  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )
2 stoweidlem23.1 . . . . 5  |-  F/ t
ph
3 stoweidlem23.9 . . . . . . . . 9  |-  ( ph  ->  G  e.  A )
43ancli 535 . . . . . . . . 9  |-  ( ph  ->  ( ph  /\  G  e.  A ) )
5 eleq1 2449 . . . . . . . . . . . 12  |-  ( f  =  G  ->  (
f  e.  A  <->  G  e.  A ) )
65anbi2d 685 . . . . . . . . . . 11  |-  ( f  =  G  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  G  e.  A ) ) )
7 feq1 5518 . . . . . . . . . . 11  |-  ( f  =  G  ->  (
f : T --> RR  <->  G : T
--> RR ) )
86, 7imbi12d 312 . . . . . . . . . 10  |-  ( f  =  G  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  G  e.  A )  ->  G : T --> RR ) ) )
9 stoweidlem23.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
108, 9vtoclg 2956 . . . . . . . . 9  |-  ( G  e.  A  ->  (
( ph  /\  G  e.  A )  ->  G : T --> RR ) )
113, 4, 10sylc 58 . . . . . . . 8  |-  ( ph  ->  G : T --> RR )
1211fnvinran 27355 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  t )  e.  RR )
1312recnd 9049 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  t )  e.  CC )
14 stoweidlem23.8 . . . . . . . . 9  |-  ( ph  ->  Z  e.  T )
1511, 14ffvelrnd 5812 . . . . . . . 8  |-  ( ph  ->  ( G `  Z
)  e.  RR )
1615adantr 452 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  Z )  e.  RR )
1716recnd 9049 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  Z )  e.  CC )
1813, 17negsubd 9351 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  +  -u ( G `  Z )
)  =  ( ( G `  t )  -  ( G `  Z ) ) )
192, 18mpteq2da 4237 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  -u ( G `  Z ) ) )  =  ( t  e.  T  |->  ( ( G `  t
)  -  ( G `
 Z ) ) ) )
20 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
2115renegcld 9398 . . . . . . . . 9  |-  ( ph  -> 
-u ( G `  Z )  e.  RR )
2221adantr 452 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  -u ( G `  Z )  e.  RR )
23 eqid 2389 . . . . . . . . 9  |-  ( t  e.  T  |->  -u ( G `  Z )
)  =  ( t  e.  T  |->  -u ( G `  Z )
)
2423fvmpt2 5753 . . . . . . . 8  |-  ( ( t  e.  T  /\  -u ( G `  Z
)  e.  RR )  ->  ( ( t  e.  T  |->  -u ( G `  Z )
) `  t )  =  -u ( G `  Z ) )
2520, 22, 24syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
-u ( G `  Z ) ) `  t )  =  -u ( G `  Z ) )
2625oveq2d 6038 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  +  ( ( t  e.  T  |->  -u ( G `  Z ) ) `  t ) )  =  ( ( G `  t )  +  -u ( G `  Z ) ) )
272, 26mpteq2da 4237 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  ( ( t  e.  T  |-> 
-u ( G `  Z ) ) `  t ) ) )  =  ( t  e.  T  |->  ( ( G `
 t )  + 
-u ( G `  Z ) ) ) )
2821ancli 535 . . . . . . 7  |-  ( ph  ->  ( ph  /\  -u ( G `  Z )  e.  RR ) )
29 eleq1 2449 . . . . . . . . . 10  |-  ( x  =  -u ( G `  Z )  ->  (
x  e.  RR  <->  -u ( G `
 Z )  e.  RR ) )
3029anbi2d 685 . . . . . . . . 9  |-  ( x  =  -u ( G `  Z )  ->  (
( ph  /\  x  e.  RR )  <->  ( ph  /\  -u ( G `  Z
)  e.  RR ) ) )
31 stoweidlem23.2 . . . . . . . . . . . . . 14  |-  F/_ t G
32 nfcv 2525 . . . . . . . . . . . . . 14  |-  F/_ t Z
3331, 32nffv 5677 . . . . . . . . . . . . 13  |-  F/_ t
( G `  Z
)
3433nfneg 9236 . . . . . . . . . . . 12  |-  F/_ t -u ( G `  Z
)
3534nfeq2 2536 . . . . . . . . . . 11  |-  F/ t  x  =  -u ( G `  Z )
36 simpl 444 . . . . . . . . . . 11  |-  ( ( x  =  -u ( G `  Z )  /\  t  e.  T
)  ->  x  =  -u ( G `  Z
) )
3735, 36mpteq2da 4237 . . . . . . . . . 10  |-  ( x  =  -u ( G `  Z )  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  -u ( G `  Z )
) )
3837eleq1d 2455 . . . . . . . . 9  |-  ( x  =  -u ( G `  Z )  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A ) )
3930, 38imbi12d 312 . . . . . . . 8  |-  ( x  =  -u ( G `  Z )  ->  (
( ( ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)  <->  ( ( ph  /\  -u ( G `  Z
)  e.  RR )  ->  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A ) ) )
40 stoweidlem23.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
4139, 40vtoclg 2956 . . . . . . 7  |-  ( -u ( G `  Z )  e.  RR  ->  (
( ph  /\  -u ( G `  Z )  e.  RR )  ->  (
t  e.  T  |->  -u ( G `  Z ) )  e.  A ) )
4221, 28, 41sylc 58 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
-u ( G `  Z ) )  e.  A )
43 stoweidlem23.5 . . . . . . 7  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
44 nfmpt1 4241 . . . . . . 7  |-  F/_ t
( t  e.  T  |-> 
-u ( G `  Z ) )
4543, 31, 44stoweidlem8 27427 . . . . . 6  |-  ( (
ph  /\  G  e.  A  /\  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A )  ->  (
t  e.  T  |->  ( ( G `  t
)  +  ( ( t  e.  T  |->  -u ( G `  Z ) ) `  t ) ) )  e.  A
)
463, 42, 45mpd3an23 1281 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  ( ( t  e.  T  |-> 
-u ( G `  Z ) ) `  t ) ) )  e.  A )
4727, 46eqeltrrd 2464 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  -u ( G `  Z ) ) )  e.  A
)
4819, 47eqeltrrd 2464 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )  e.  A
)
491, 48syl5eqel 2473 . 2  |-  ( ph  ->  H  e.  A )
50 stoweidlem23.7 . . . . . 6  |-  ( ph  ->  S  e.  T )
5111, 50ffvelrnd 5812 . . . . 5  |-  ( ph  ->  ( G `  S
)  e.  RR )
5251recnd 9049 . . . 4  |-  ( ph  ->  ( G `  S
)  e.  CC )
5315recnd 9049 . . . 4  |-  ( ph  ->  ( G `  Z
)  e.  CC )
54 stoweidlem23.10 . . . 4  |-  ( ph  ->  ( G `  S
)  =/=  ( G `
 Z ) )
5552, 53, 54subne0d 9354 . . 3  |-  ( ph  ->  ( ( G `  S )  -  ( G `  Z )
)  =/=  0 )
5651, 15resubcld 9399 . . . 4  |-  ( ph  ->  ( ( G `  S )  -  ( G `  Z )
)  e.  RR )
57 nfcv 2525 . . . . 5  |-  F/_ t S
5831, 57nffv 5677 . . . . . 6  |-  F/_ t
( G `  S
)
59 nfcv 2525 . . . . . 6  |-  F/_ t  -
6058, 59, 33nfov 6045 . . . . 5  |-  F/_ t
( ( G `  S )  -  ( G `  Z )
)
61 fveq2 5670 . . . . . 6  |-  ( t  =  S  ->  ( G `  t )  =  ( G `  S ) )
6261oveq1d 6037 . . . . 5  |-  ( t  =  S  ->  (
( G `  t
)  -  ( G `
 Z ) )  =  ( ( G `
 S )  -  ( G `  Z ) ) )
6357, 60, 62, 1fvmptf 5762 . . . 4  |-  ( ( S  e.  T  /\  ( ( G `  S )  -  ( G `  Z )
)  e.  RR )  ->  ( H `  S )  =  ( ( G `  S
)  -  ( G `
 Z ) ) )
6450, 56, 63syl2anc 643 . . 3  |-  ( ph  ->  ( H `  S
)  =  ( ( G `  S )  -  ( G `  Z ) ) )
6515, 15resubcld 9399 . . . . 5  |-  ( ph  ->  ( ( G `  Z )  -  ( G `  Z )
)  e.  RR )
6633, 59, 33nfov 6045 . . . . . 6  |-  F/_ t
( ( G `  Z )  -  ( G `  Z )
)
67 fveq2 5670 . . . . . . 7  |-  ( t  =  Z  ->  ( G `  t )  =  ( G `  Z ) )
6867oveq1d 6037 . . . . . 6  |-  ( t  =  Z  ->  (
( G `  t
)  -  ( G `
 Z ) )  =  ( ( G `
 Z )  -  ( G `  Z ) ) )
6932, 66, 68, 1fvmptf 5762 . . . . 5  |-  ( ( Z  e.  T  /\  ( ( G `  Z )  -  ( G `  Z )
)  e.  RR )  ->  ( H `  Z )  =  ( ( G `  Z
)  -  ( G `
 Z ) ) )
7014, 65, 69syl2anc 643 . . . 4  |-  ( ph  ->  ( H `  Z
)  =  ( ( G `  Z )  -  ( G `  Z ) ) )
7153subidd 9333 . . . 4  |-  ( ph  ->  ( ( G `  Z )  -  ( G `  Z )
)  =  0 )
7270, 71eqtrd 2421 . . 3  |-  ( ph  ->  ( H `  Z
)  =  0 )
7355, 64, 723netr4d 2579 . 2  |-  ( ph  ->  ( H `  S
)  =/=  ( H `
 Z ) )
7449, 73, 723jca 1134 1  |-  ( ph  ->  ( H  e.  A  /\  ( H `  S
)  =/=  ( H `
 Z )  /\  ( H `  Z )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2512    =/= wne 2552    e. cmpt 4209   -->wf 5392   ` cfv 5396  (class class class)co 6022   RRcr 8924   0cc0 8925    + caddc 8928    - cmin 9225   -ucneg 9226
This theorem is referenced by:  stoweidlem43  27462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-riota 6487  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-ltxr 9060  df-sub 9227  df-neg 9228
  Copyright terms: Public domain W3C validator