Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Unicode version

Theorem stoweidlem22 31636
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8  |-  F/ t
ph
stoweidlem22.9  |-  F/_ t F
stoweidlem22.10  |-  F/_ t G
stoweidlem22.1  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t )
) )
stoweidlem22.2  |-  I  =  ( t  e.  T  |-> 
-u 1 )
stoweidlem22.3  |-  L  =  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
stoweidlem22.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem22.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem22.6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem22.7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
Assertion
Ref Expression
stoweidlem22  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t, A    f, F, g    f, G, g    f, I, g    T, f, g, t    ph, f, g    g, L    x, t, A    x, T    ph, x
Allowed substitution hints:    ph( t)    F( x, t)    G( x, t)    H( x, t, f, g)    I( x, t)    L( x, t, f)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4  |-  F/ t
ph
2 stoweidlem22.9 . . . . 5  |-  F/_ t F
32nfel1 2645 . . . 4  |-  F/ t  F  e.  A
4 stoweidlem22.10 . . . . 5  |-  F/_ t G
54nfel1 2645 . . . 4  |-  F/ t  G  e.  A
61, 3, 5nf3an 1877 . . 3  |-  F/ t ( ph  /\  F  e.  A  /\  G  e.  A )
7 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  t  e.  T )
8 simpl1 999 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ph )
9 stoweidlem22.2 . . . . . . . . . . . 12  |-  I  =  ( t  e.  T  |-> 
-u 1 )
10 neg1rr 10652 . . . . . . . . . . . . 13  |-  -u 1  e.  RR
11 stoweidlem22.7 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
1211stoweidlem4 31618 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -u 1  e.  RR )  ->  (
t  e.  T  |->  -u
1 )  e.  A
)
1310, 12mpan2 671 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  T  |-> 
-u 1 )  e.  A )
149, 13syl5eqel 2559 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  A )
15 eleq1 2539 . . . . . . . . . . . . . . 15  |-  ( f  =  I  ->  (
f  e.  A  <->  I  e.  A ) )
1615anbi2d 703 . . . . . . . . . . . . . 14  |-  ( f  =  I  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  I  e.  A ) ) )
17 feq1 5719 . . . . . . . . . . . . . 14  |-  ( f  =  I  ->  (
f : T --> RR  <->  I : T
--> RR ) )
1816, 17imbi12d 320 . . . . . . . . . . . . 13  |-  ( f  =  I  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  I  e.  A )  ->  I : T --> RR ) ) )
19 stoweidlem22.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2018, 19vtoclg 3176 . . . . . . . . . . . 12  |-  ( I  e.  A  ->  (
( ph  /\  I  e.  A )  ->  I : T --> RR ) )
2120anabsi7 817 . . . . . . . . . . 11  |-  ( (
ph  /\  I  e.  A )  ->  I : T --> RR )
2214, 21mpdan 668 . . . . . . . . . 10  |-  ( ph  ->  I : T --> RR )
238, 22syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  I : T --> RR )
2423, 7ffvelrnd 6033 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
I `  t )  e.  RR )
25 simpl3 1001 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  G  e.  A )
26 eleq1 2539 . . . . . . . . . . . . . . 15  |-  ( f  =  G  ->  (
f  e.  A  <->  G  e.  A ) )
2726anbi2d 703 . . . . . . . . . . . . . 14  |-  ( f  =  G  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  G  e.  A ) ) )
28 feq1 5719 . . . . . . . . . . . . . 14  |-  ( f  =  G  ->  (
f : T --> RR  <->  G : T
--> RR ) )
2927, 28imbi12d 320 . . . . . . . . . . . . 13  |-  ( f  =  G  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  G  e.  A )  ->  G : T --> RR ) ) )
3029, 19vtoclg 3176 . . . . . . . . . . . 12  |-  ( G  e.  A  ->  (
( ph  /\  G  e.  A )  ->  G : T --> RR ) )
3130anabsi7 817 . . . . . . . . . . 11  |-  ( (
ph  /\  G  e.  A )  ->  G : T --> RR )
32313adant3 1016 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  G : T
--> RR )
33 simp3 998 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  t  e.  T )
3432, 33ffvelrnd 6033 . . . . . . . . 9  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  ( G `  t )  e.  RR )
358, 25, 7, 34syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( G `  t )  e.  RR )
3624, 35remulcld 9636 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( I `  t
)  x.  ( G `
 t ) )  e.  RR )
37 stoweidlem22.3 . . . . . . . 8  |-  L  =  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
3837fvmpt2 5964 . . . . . . 7  |-  ( ( t  e.  T  /\  ( ( I `  t )  x.  ( G `  t )
)  e.  RR )  ->  ( L `  t )  =  ( ( I `  t
)  x.  ( G `
 t ) ) )
397, 36, 38syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( L `  t )  =  ( ( I `
 t )  x.  ( G `  t
) ) )
409fvmpt2 5964 . . . . . . . . 9  |-  ( ( t  e.  T  /\  -u 1  e.  RR )  ->  ( I `  t )  =  -u
1 )
4110, 40mpan2 671 . . . . . . . 8  |-  ( t  e.  T  ->  (
I `  t )  =  -u 1 )
4241adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
I `  t )  =  -u 1 )
4342oveq1d 6310 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( I `  t
)  x.  ( G `
 t ) )  =  ( -u 1  x.  ( G `  t
) ) )
4435recnd 9634 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( G `  t )  e.  CC )
4544mulm1d 10020 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( -u 1  x.  ( G `
 t ) )  =  -u ( G `  t ) )
4639, 43, 453eqtrd 2512 . . . . 5  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( L `  t )  =  -u ( G `  t ) )
4746oveq2d 6311 . . . 4  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  +  ( L `
 t ) )  =  ( ( F `
 t )  + 
-u ( G `  t ) ) )
48 simpl2 1000 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  F  e.  A )
49 eleq1 2539 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
5049anbi2d 703 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  F  e.  A ) ) )
51 feq1 5719 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f : T --> RR  <->  F : T
--> RR ) )
5250, 51imbi12d 320 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  F  e.  A )  ->  F : T --> RR ) ) )
5352, 19vtoclg 3176 . . . . . . . . 9  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A )  ->  F : T --> RR ) )
5453anabsi7 817 . . . . . . . 8  |-  ( (
ph  /\  F  e.  A )  ->  F : T --> RR )
558, 48, 54syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  F : T --> RR )
5655, 7ffvelrnd 6033 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
5756recnd 9634 . . . . 5  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
5857, 44negsubd 9948 . . . 4  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  +  -u ( G `  t )
)  =  ( ( F `  t )  -  ( G `  t ) ) )
5947, 58eqtr2d 2509 . . 3  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  -  ( G `
 t ) )  =  ( ( F `
 t )  +  ( L `  t
) ) )
606, 59mpteq2da 4538 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  =  ( t  e.  T  |->  ( ( F `
 t )  +  ( L `  t
) ) ) )
61143ad2ant1 1017 . . . . 5  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  I  e.  A )
62 nfmpt1 4542 . . . . . . . 8  |-  F/_ t
( t  e.  T  |-> 
-u 1 )
639, 62nfcxfr 2627 . . . . . . 7  |-  F/_ t
I
6463nfeq2 2646 . . . . . 6  |-  F/ t  f  =  I
654nfeq2 2646 . . . . . 6  |-  F/ t  g  =  G
66 stoweidlem22.6 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6764, 65, 66stoweidlem6 31620 . . . . 5  |-  ( (
ph  /\  I  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t ) ) )  e.  A )
6861, 67syld3an2 1275 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t ) ) )  e.  A )
6937, 68syl5eqel 2559 . . 3  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  L  e.  A )
70 stoweidlem22.5 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
71 nfmpt1 4542 . . . . 5  |-  F/_ t
( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
7237, 71nfcxfr 2627 . . . 4  |-  F/_ t L
7370, 2, 72stoweidlem8 31622 . . 3  |-  ( (
ph  /\  F  e.  A  /\  L  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( L `  t ) ) )  e.  A )
7469, 73syld3an3 1273 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( L `  t ) ) )  e.  A )
7560, 74eqeltrd 2555 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   F/wnf 1599    e. wcel 1767   F/_wnfc 2615    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503   1c1 9505    + caddc 9507    x. cmul 9509    - cmin 9817   -ucneg 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645  df-sub 9819  df-neg 9820
This theorem is referenced by:  stoweidlem33  31647
  Copyright terms: Public domain W3C validator