Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem20 Structured version   Unicode version

Theorem stoweidlem20 31348
Description: If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem20.1  |-  F/ t
ph
stoweidlem20.2  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
stoweidlem20.3  |-  ( ph  ->  M  e.  NN )
stoweidlem20.4  |-  ( ph  ->  G : ( 1 ... M ) --> A )
stoweidlem20.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem20.6  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem20  |-  ( ph  ->  F  e.  A )
Distinct variable groups:    f, g,
i, t, G    A, f, g    T, f, g, i, t    ph, f,
g, i    i, M, t
Allowed substitution hints:    ph( t)    A( t, i)    F( t, f, g, i)    M( f, g)

Proof of Theorem stoweidlem20
Dummy variables  y  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem20.2 . 2  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
2 stoweidlem20.3 . . 3  |-  ( ph  ->  M  e.  NN )
32nnred 10551 . . . . 5  |-  ( ph  ->  M  e.  RR )
43leidd 10119 . . . 4  |-  ( ph  ->  M  <_  M )
54ancli 551 . . 3  |-  ( ph  ->  ( ph  /\  M  <_  M ) )
6 eleq1 2539 . . . . 5  |-  ( n  =  M  ->  (
n  e.  NN  <->  M  e.  NN ) )
7 breq1 4450 . . . . . . 7  |-  ( n  =  M  ->  (
n  <_  M  <->  M  <_  M ) )
87anbi2d 703 . . . . . 6  |-  ( n  =  M  ->  (
( ph  /\  n  <_  M )  <->  ( ph  /\  M  <_  M )
) )
9 oveq2 6292 . . . . . . . . 9  |-  ( n  =  M  ->  (
1 ... n )  =  ( 1 ... M
) )
109sumeq1d 13486 . . . . . . . 8  |-  ( n  =  M  ->  sum_ i  e.  ( 1 ... n
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
1110mpteq2dv 4534 . . . . . . 7  |-  ( n  =  M  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) ) )
1211eleq1d 2536 . . . . . 6  |-  ( n  =  M  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)  e.  A ) )
138, 12imbi12d 320 . . . . 5  |-  ( n  =  M  ->  (
( ( ph  /\  n  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  M  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )  e.  A
) ) )
146, 13imbi12d 320 . . . 4  |-  ( n  =  M  ->  (
( n  e.  NN  ->  ( ( ph  /\  n  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
) )  <->  ( M  e.  NN  ->  ( ( ph  /\  M  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  e.  A ) ) ) )
15 breq1 4450 . . . . . . 7  |-  ( x  =  1  ->  (
x  <_  M  <->  1  <_  M ) )
1615anbi2d 703 . . . . . 6  |-  ( x  =  1  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  1  <_  M )
) )
17 oveq2 6292 . . . . . . . . 9  |-  ( x  =  1  ->  (
1 ... x )  =  ( 1 ... 1
) )
1817sumeq1d 13486 . . . . . . . 8  |-  ( x  =  1  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i
) `  t )
)
1918mpteq2dv 4534 . . . . . . 7  |-  ( x  =  1  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t ) ) )
2019eleq1d 2536 . . . . . 6  |-  ( x  =  1  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i
) `  t )
)  e.  A ) )
2116, 20imbi12d 320 . . . . 5  |-  ( x  =  1  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  1  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  e.  A
) ) )
22 breq1 4450 . . . . . . 7  |-  ( x  =  y  ->  (
x  <_  M  <->  y  <_  M ) )
2322anbi2d 703 . . . . . 6  |-  ( x  =  y  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  y  <_  M )
) )
24 oveq2 6292 . . . . . . . . 9  |-  ( x  =  y  ->  (
1 ... x )  =  ( 1 ... y
) )
2524sumeq1d 13486 . . . . . . . 8  |-  ( x  =  y  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)
2625mpteq2dv 4534 . . . . . . 7  |-  ( x  =  y  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) )
2726eleq1d 2536 . . . . . 6  |-  ( x  =  y  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A ) )
2823, 27imbi12d 320 . . . . 5  |-  ( x  =  y  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  y  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) ) )
29 breq1 4450 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  <_  M  <->  ( y  +  1 )  <_  M ) )
3029anbi2d 703 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  ( y  +  1 )  <_  M )
) )
31 oveq2 6292 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  (
1 ... x )  =  ( 1 ... (
y  +  1 ) ) )
3231sumeq1d 13486 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)
3332mpteq2dv 4534 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) ) )
3433eleq1d 2536 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)  e.  A ) )
3530, 34imbi12d 320 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  ( y  +  1 )  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  e.  A
) ) )
36 breq1 4450 . . . . . . 7  |-  ( x  =  n  ->  (
x  <_  M  <->  n  <_  M ) )
3736anbi2d 703 . . . . . 6  |-  ( x  =  n  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  n  <_  M )
) )
38 oveq2 6292 . . . . . . . . 9  |-  ( x  =  n  ->  (
1 ... x )  =  ( 1 ... n
) )
3938sumeq1d 13486 . . . . . . . 8  |-  ( x  =  n  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)
4039mpteq2dv 4534 . . . . . . 7  |-  ( x  =  n  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... n
) ( ( G `
 i ) `  t ) ) )
4140eleq1d 2536 . . . . . 6  |-  ( x  =  n  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  e.  A ) )
4237, 41imbi12d 320 . . . . 5  |-  ( x  =  n  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  n  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
) ) )
43 stoweidlem20.1 . . . . . . . . 9  |-  F/ t
ph
44 1z 10894 . . . . . . . . . 10  |-  1  e.  ZZ
45 stoweidlem20.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : ( 1 ... M ) --> A )
46 nnuz 11117 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
472, 46syl6eleq 2565 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
48 eluzfz1 11693 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... M
) )
4947, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  ( 1 ... M ) )
5045, 49ffvelrnd 6022 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G `  1
)  e.  A )
5150ancli 551 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ph  /\  ( G `  1 )  e.  A ) )
52 eleq1 2539 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G ` 
1 )  ->  (
f  e.  A  <->  ( G `  1 )  e.  A ) )
5352anbi2d 703 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G ` 
1 )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  1
)  e.  A ) ) )
54 feq1 5713 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G ` 
1 )  ->  (
f : T --> RR  <->  ( G `  1 ) : T --> RR ) )
5553, 54imbi12d 320 . . . . . . . . . . . . . 14  |-  ( f  =  ( G ` 
1 )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  1 )  e.  A )  -> 
( G `  1
) : T --> RR ) ) )
56 stoweidlem20.6 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
5755, 56vtoclg 3171 . . . . . . . . . . . . 13  |-  ( ( G `  1 )  e.  A  ->  (
( ph  /\  ( G `  1 )  e.  A )  ->  ( G `  1 ) : T --> RR ) )
5850, 51, 57sylc 60 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  1
) : T --> RR )
5958ffvelrnda 6021 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  1
) `  t )  e.  RR )
6059recnd 9622 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  1
) `  t )  e.  CC )
61 fveq2 5866 . . . . . . . . . . . 12  |-  ( i  =  1  ->  ( G `  i )  =  ( G ` 
1 ) )
6261fveq1d 5868 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( G `  i
) `  t )  =  ( ( G `
 1 ) `  t ) )
6362fsum1 13527 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( G ` 
1 ) `  t
)  e.  CC )  ->  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
)  =  ( ( G `  1 ) `
 t ) )
6444, 60, 63sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t )  =  ( ( G `  1
) `  t )
)
6543, 64mpteq2da 4532 . . . . . . . 8  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  =  ( t  e.  T  |->  ( ( G `  1
) `  t )
) )
6658feqmptd 5920 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  =  ( t  e.  T  |->  ( ( G `  1 ) `
 t ) ) )
6765, 66eqtr4d 2511 . . . . . . 7  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  =  ( G `  1 ) )
6867, 50eqeltrd 2555 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  e.  A
)
6968adantr 465 . . . . 5  |-  ( (
ph  /\  1  <_  M )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t ) )  e.  A )
70 simprl 755 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  ph )
71 simpll 753 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  y  e.  NN )
72 simprr 756 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
y  +  1 )  <_  M )
73 simp1 996 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ph )
74 nnre 10543 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  RR )
75743ad2ant2 1018 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  e.  RR )
76 1red 9611 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  e.  RR )
7775, 76readdcld 9623 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  RR )
7823ad2ant1 1017 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  NN )
7978nnred 10551 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  RR )
8075lep1d 10477 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  <_  ( y  +  1 ) )
81 simp3 998 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  <_  M )
8275, 77, 79, 80, 81letrd 9738 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  <_  M )
8373, 82jca 532 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( ph  /\  y  <_  M )
)
8470, 71, 72, 83syl3anc 1228 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  ( ph  /\  y  <_  M
) )
85 simplr 754 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
( ph  /\  y  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A ) )
8684, 85mpd 15 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )
87 nfv 1683 . . . . . . . . . . 11  |-  F/ t  y  e.  NN
88 nfv 1683 . . . . . . . . . . 11  |-  F/ t ( y  +  1 )  <_  M
8943, 87, 88nf3an 1877 . . . . . . . . . 10  |-  F/ t ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )
90 simpl2 1000 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  y  e.  NN )
9190, 46syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  y  e.  ( ZZ>= `  1 )
)
92 simpll1 1035 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ph )
93 1zzd 10895 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  1  e.  ZZ )
942nnzd 10965 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
95943ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  ZZ )
9695ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  M  e.  ZZ )
97 elfzelz 11688 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  e.  ZZ )
9897adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  ZZ )
99 elfzle1 11689 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  1  <_  i )
10099adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  1  <_  i
)
10197zred 10966 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  e.  RR )
102101adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  RR )
10377ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( y  +  1 )  e.  RR )
10479ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  M  e.  RR )
105 elfzle2 11690 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  <_  ( y  +  1 ) )
106105adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  <_  (
y  +  1 ) )
107 simpll3 1037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( y  +  1 )  <_  M
)
108102, 103, 104, 106, 107letrd 9738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  <_  M
)
109 elfz4 11681 . . . . . . . . . . . . . 14  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  M ) )  ->  i  e.  ( 1 ... M
) )
11093, 96, 98, 100, 108, 109syl32anc 1236 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  ( 1 ... M ) )
111 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  t  e.  T
)
11245ffvelrnda 6021 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  A )
1131123adant3 1016 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( G `  i )  e.  A )
114 simp1 996 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ph )
115114, 113jca 532 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( ph  /\  ( G `  i )  e.  A
) )
116 eleq1 2539 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( G `  i )  ->  (
f  e.  A  <->  ( G `  i )  e.  A
) )
117116anbi2d 703 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  i )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  i
)  e.  A ) ) )
118 feq1 5713 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  i )  ->  (
f : T --> RR  <->  ( G `  i ) : T --> RR ) )
119117, 118imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  i )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  i )  e.  A )  -> 
( G `  i
) : T --> RR ) ) )
120119, 56vtoclg 3171 . . . . . . . . . . . . . . . 16  |-  ( ( G `  i )  e.  A  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
121113, 115, 120sylc 60 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( G `  i ) : T --> RR )
122 simp3 998 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  t  e.  T )
123121, 122ffvelrnd 6022 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( G `  i
) `  t )  e.  RR )
124123recnd 9622 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( G `  i
) `  t )  e.  CC )
12592, 110, 111, 124syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( ( G `
 i ) `  t )  e.  CC )
126 fveq2 5866 . . . . . . . . . . . . 13  |-  ( i  =  ( y  +  1 )  ->  ( G `  i )  =  ( G `  ( y  +  1 ) ) )
127126fveq1d 5868 . . . . . . . . . . . 12  |-  ( i  =  ( y  +  1 )  ->  (
( G `  i
) `  t )  =  ( ( G `
 ( y  +  1 ) ) `  t ) )
12891, 125, 127fsump1 13534 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t )  =  (
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
129 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  t  e.  T )
130 fzfid 12051 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
1 ... y )  e. 
Fin )
131 simpll1 1035 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  ph )
132 1zzd 10895 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  1  e.  ZZ )
13395ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  M  e.  ZZ )
134 elfzelz 11688 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... y )  ->  i  e.  ZZ )
135134adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  e.  ZZ )
136 elfzle1 11689 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... y )  ->  1  <_  i )
137136adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  1  <_  i
)
138134zred 10966 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1 ... y )  ->  i  e.  RR )
139138adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  e.  RR )
14077adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  (
y  +  1 )  e.  RR )
14179adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  M  e.  RR )
14275adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  y  e.  RR )
143 elfzle2 11690 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 1 ... y )  ->  i  <_  y )
144143adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  y )
145 letrp1 10384 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  RR  /\  y  e.  RR  /\  i  <_  y )  ->  i  <_  ( y  +  1 ) )
146139, 142, 144, 145syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  ( y  +  1 ) )
147 simpl3 1001 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  (
y  +  1 )  <_  M )
148139, 140, 141, 146, 147letrd 9738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  M )
149148adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  <_  M
)
150132, 133, 135, 137, 149, 109syl32anc 1236 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  e.  ( 1 ... M ) )
151 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  t  e.  T
)
152131, 150, 151, 123syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  ( ( G `
 i ) `  t )  e.  RR )
153130, 152fsumrecl 13519 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t )  e.  RR )
154 eqid 2467 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )
155154fvmpt2 5957 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  /\  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )  e.  RR )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  =  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )
156129, 153, 155syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  =  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )
157156oveq1d 6299 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) )  =  ( sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t )  +  ( ( G `  (
y  +  1 ) ) `  t ) ) )
158128, 157eqtr4d 2511 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
15989, 158mpteq2da 4532 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) `  t )  +  ( ( G `  (
y  +  1 ) ) `  t ) ) ) )
160159adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
161 1zzd 10895 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  e.  ZZ )
162 peano2nn 10548 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
163162nnzd 10965 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  ZZ )
1641633ad2ant2 1018 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  ZZ )
165162nnge1d 10578 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  1  <_  ( y  +  1 ) )
1661653ad2ant2 1018 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  <_  ( y  +  1 ) )
167 elfz4 11681 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  ( y  +  1 )  e.  ZZ )  /\  ( 1  <_ 
( y  +  1 )  /\  ( y  +  1 )  <_  M ) )  -> 
( y  +  1 )  e.  ( 1 ... M ) )
168161, 95, 164, 166, 81, 167syl32anc 1236 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  ( 1 ... M
) )
16945ffvelrnda 6021 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  ( G `  ( y  +  1 ) )  e.  A )
17073, 168, 169syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( G `  ( y  +  1 ) )  e.  A
)
171 eleq1 2539 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
f  e.  A  <->  ( G `  ( y  +  1 ) )  e.  A
) )
172171anbi2d 703 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  (
y  +  1 ) )  e.  A ) ) )
173 feq1 5713 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
f : T --> RR  <->  ( G `  ( y  +  1 ) ) : T --> RR ) )
174172, 173imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  ( y  +  1 ) )  e.  A )  -> 
( G `  (
y  +  1 ) ) : T --> RR ) ) )
175174, 56vtoclg 3171 . . . . . . . . . . . . . . . 16  |-  ( ( G `  ( y  +  1 ) )  e.  A  ->  (
( ph  /\  ( G `  ( y  +  1 ) )  e.  A )  -> 
( G `  (
y  +  1 ) ) : T --> RR ) )
176175anabsi7 817 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( G `  ( y  +  1 ) )  e.  A
)  ->  ( G `  ( y  +  1 ) ) : T --> RR )
17773, 170, 176syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( G `  ( y  +  1 ) ) : T --> RR )
178177ffvelrnda 6021 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( G `  (
y  +  1 ) ) `  t )  e.  RR )
179 eqid 2467 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) )  =  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) )
180179fvmpt2 5957 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  /\  ( ( G `  ( y  +  1 ) ) `  t
)  e.  RR )  ->  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t )  =  ( ( G `  ( y  +  1 ) ) `  t
) )
181129, 178, 180syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) ) `  t
)  =  ( ( G `  ( y  +  1 ) ) `
 t ) )
182181oveq2d 6300 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
18389, 182mpteq2da 4532 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) `  t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
184183adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
185 simpl1 999 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ph )
186 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
)
187168adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( y  +  1 )  e.  ( 1 ... M ) )
188176feqmptd 5920 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( G `  ( y  +  1 ) )  e.  A
)  ->  ( G `  ( y  +  1 ) )  =  ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) )
189169, 188syldan 470 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  ( G `  ( y  +  1 ) )  =  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) ) )
190189, 169eqeltrrd 2556 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  (
t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) )  e.  A )
191185, 187, 190syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) )  e.  A )
192 stoweidlem20.5 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
193 nfmpt1 4536 . . . . . . . . . . 11  |-  F/_ t
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )
194 nfmpt1 4536 . . . . . . . . . . 11  |-  F/_ t
( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) )
195192, 193, 194stoweidlem8 31336 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )  e.  A  /\  ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) )  e.  A )  -> 
( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) ) `  t
) ) )  e.  A )
196185, 186, 191, 195syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t ) ) )  e.  A )
197184, 196eqeltrrd 2556 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( G `
 ( y  +  1 ) ) `  t ) ) )  e.  A )
198160, 197eqeltrd 2555 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  e.  A
)
19970, 71, 72, 86, 198syl31anc 1231 . . . . . 6  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)  e.  A )
200199exp31 604 . . . . 5  |-  ( y  e.  NN  ->  (
( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
)  ->  ( ( ph  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) )  e.  A ) ) )
20121, 28, 35, 42, 69, 200nnind 10554 . . . 4  |-  ( n  e.  NN  ->  (
( ph  /\  n  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  e.  A ) )
20214, 201vtoclg 3171 . . 3  |-  ( M  e.  NN  ->  ( M  e.  NN  ->  ( ( ph  /\  M  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)  e.  A ) ) )
2032, 2, 5, 202syl3c 61 . 2  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )  e.  A
)
2041, 203syl5eqel 2559 1  |-  ( ph  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   F/wnf 1599    e. wcel 1767   class class class wbr 4447    |-> cmpt 4505   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   1c1 9493    + caddc 9495    <_ cle 9629   NNcn 10536   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672   sum_csu 13471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472
This theorem is referenced by:  stoweidlem32  31360
  Copyright terms: Public domain W3C validator