Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem20 Structured version   Unicode version

Theorem stoweidlem20 37821
Description: If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem20.1  |-  F/ t
ph
stoweidlem20.2  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
stoweidlem20.3  |-  ( ph  ->  M  e.  NN )
stoweidlem20.4  |-  ( ph  ->  G : ( 1 ... M ) --> A )
stoweidlem20.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem20.6  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem20  |-  ( ph  ->  F  e.  A )
Distinct variable groups:    f, g,
i, t, G    A, f, g    T, f, g, i, t    ph, f,
g, i    i, M, t
Allowed substitution hints:    ph( t)    A( t, i)    F( t, f, g, i)    M( f, g)

Proof of Theorem stoweidlem20
Dummy variables  y  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem20.2 . 2  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
2 stoweidlem20.3 . . 3  |-  ( ph  ->  M  e.  NN )
32nnred 10632 . . . . 5  |-  ( ph  ->  M  e.  RR )
43leidd 10188 . . . 4  |-  ( ph  ->  M  <_  M )
54ancli 553 . . 3  |-  ( ph  ->  ( ph  /\  M  <_  M ) )
6 eleq1 2495 . . . . 5  |-  ( n  =  M  ->  (
n  e.  NN  <->  M  e.  NN ) )
7 breq1 4426 . . . . . . 7  |-  ( n  =  M  ->  (
n  <_  M  <->  M  <_  M ) )
87anbi2d 708 . . . . . 6  |-  ( n  =  M  ->  (
( ph  /\  n  <_  M )  <->  ( ph  /\  M  <_  M )
) )
9 oveq2 6314 . . . . . . . . 9  |-  ( n  =  M  ->  (
1 ... n )  =  ( 1 ... M
) )
109sumeq1d 13767 . . . . . . . 8  |-  ( n  =  M  ->  sum_ i  e.  ( 1 ... n
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
1110mpteq2dv 4511 . . . . . . 7  |-  ( n  =  M  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) ) )
1211eleq1d 2491 . . . . . 6  |-  ( n  =  M  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)  e.  A ) )
138, 12imbi12d 321 . . . . 5  |-  ( n  =  M  ->  (
( ( ph  /\  n  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  M  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )  e.  A
) ) )
146, 13imbi12d 321 . . . 4  |-  ( n  =  M  ->  (
( n  e.  NN  ->  ( ( ph  /\  n  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
) )  <->  ( M  e.  NN  ->  ( ( ph  /\  M  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  e.  A ) ) ) )
15 breq1 4426 . . . . . . 7  |-  ( x  =  1  ->  (
x  <_  M  <->  1  <_  M ) )
1615anbi2d 708 . . . . . 6  |-  ( x  =  1  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  1  <_  M )
) )
17 oveq2 6314 . . . . . . . . 9  |-  ( x  =  1  ->  (
1 ... x )  =  ( 1 ... 1
) )
1817sumeq1d 13767 . . . . . . . 8  |-  ( x  =  1  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i
) `  t )
)
1918mpteq2dv 4511 . . . . . . 7  |-  ( x  =  1  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t ) ) )
2019eleq1d 2491 . . . . . 6  |-  ( x  =  1  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i
) `  t )
)  e.  A ) )
2116, 20imbi12d 321 . . . . 5  |-  ( x  =  1  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  1  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  e.  A
) ) )
22 breq1 4426 . . . . . . 7  |-  ( x  =  y  ->  (
x  <_  M  <->  y  <_  M ) )
2322anbi2d 708 . . . . . 6  |-  ( x  =  y  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  y  <_  M )
) )
24 oveq2 6314 . . . . . . . . 9  |-  ( x  =  y  ->  (
1 ... x )  =  ( 1 ... y
) )
2524sumeq1d 13767 . . . . . . . 8  |-  ( x  =  y  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)
2625mpteq2dv 4511 . . . . . . 7  |-  ( x  =  y  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) )
2726eleq1d 2491 . . . . . 6  |-  ( x  =  y  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A ) )
2823, 27imbi12d 321 . . . . 5  |-  ( x  =  y  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  y  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) ) )
29 breq1 4426 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  <_  M  <->  ( y  +  1 )  <_  M ) )
3029anbi2d 708 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  ( y  +  1 )  <_  M )
) )
31 oveq2 6314 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  (
1 ... x )  =  ( 1 ... (
y  +  1 ) ) )
3231sumeq1d 13767 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)
3332mpteq2dv 4511 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) ) )
3433eleq1d 2491 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)  e.  A ) )
3530, 34imbi12d 321 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  ( y  +  1 )  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  e.  A
) ) )
36 breq1 4426 . . . . . . 7  |-  ( x  =  n  ->  (
x  <_  M  <->  n  <_  M ) )
3736anbi2d 708 . . . . . 6  |-  ( x  =  n  ->  (
( ph  /\  x  <_  M )  <->  ( ph  /\  n  <_  M )
) )
38 oveq2 6314 . . . . . . . . 9  |-  ( x  =  n  ->  (
1 ... x )  =  ( 1 ... n
) )
3938sumeq1d 13767 . . . . . . . 8  |-  ( x  =  n  ->  sum_ i  e.  ( 1 ... x
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)
4039mpteq2dv 4511 . . . . . . 7  |-  ( x  =  n  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... x ) ( ( G `  i
) `  t )
)  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ... n
) ( ( G `
 i ) `  t ) ) )
4140eleq1d 2491 . . . . . 6  |-  ( x  =  n  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  e.  A ) )
4237, 41imbi12d 321 . . . . 5  |-  ( x  =  n  ->  (
( ( ph  /\  x  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... x ) ( ( G `  i ) `  t
) )  e.  A
)  <->  ( ( ph  /\  n  <_  M )  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... n ) ( ( G `  i ) `  t
) )  e.  A
) ) )
43 stoweidlem20.1 . . . . . . . . 9  |-  F/ t
ph
44 1z 10975 . . . . . . . . . 10  |-  1  e.  ZZ
45 stoweidlem20.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : ( 1 ... M ) --> A )
46 nnuz 11202 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
472, 46syl6eleq 2517 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
48 eluzfz1 11814 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... M
) )
4947, 48syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  ( 1 ... M ) )
5045, 49ffvelrnd 6039 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G `  1
)  e.  A )
5150ancli 553 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ph  /\  ( G `  1 )  e.  A ) )
52 eleq1 2495 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G ` 
1 )  ->  (
f  e.  A  <->  ( G `  1 )  e.  A ) )
5352anbi2d 708 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G ` 
1 )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  1
)  e.  A ) ) )
54 feq1 5728 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G ` 
1 )  ->  (
f : T --> RR  <->  ( G `  1 ) : T --> RR ) )
5553, 54imbi12d 321 . . . . . . . . . . . . . 14  |-  ( f  =  ( G ` 
1 )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  1 )  e.  A )  -> 
( G `  1
) : T --> RR ) ) )
56 stoweidlem20.6 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
5755, 56vtoclg 3139 . . . . . . . . . . . . 13  |-  ( ( G `  1 )  e.  A  ->  (
( ph  /\  ( G `  1 )  e.  A )  ->  ( G `  1 ) : T --> RR ) )
5850, 51, 57sylc 62 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  1
) : T --> RR )
5958ffvelrnda 6038 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  1
) `  t )  e.  RR )
6059recnd 9677 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  1
) `  t )  e.  CC )
61 fveq2 5882 . . . . . . . . . . . 12  |-  ( i  =  1  ->  ( G `  i )  =  ( G ` 
1 ) )
6261fveq1d 5884 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( G `  i
) `  t )  =  ( ( G `
 1 ) `  t ) )
6362fsum1 13808 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( G ` 
1 ) `  t
)  e.  CC )  ->  sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
)  =  ( ( G `  1 ) `
 t ) )
6444, 60, 63sylancr 667 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t )  =  ( ( G `  1
) `  t )
)
6543, 64mpteq2da 4509 . . . . . . . 8  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  =  ( t  e.  T  |->  ( ( G `  1
) `  t )
) )
6658feqmptd 5935 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  =  ( t  e.  T  |->  ( ( G `  1 ) `
 t ) ) )
6765, 66eqtr4d 2466 . . . . . . 7  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  =  ( G `  1 ) )
6867, 50eqeltrd 2507 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... 1 ) ( ( G `  i ) `  t
) )  e.  A
)
6968adantr 466 . . . . 5  |-  ( (
ph  /\  1  <_  M )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... 1
) ( ( G `
 i ) `  t ) )  e.  A )
70 simprl 762 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  ph )
71 simpll 758 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  y  e.  NN )
72 simprr 764 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
y  +  1 )  <_  M )
73 simp1 1005 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ph )
74 nnre 10624 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  RR )
75743ad2ant2 1027 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  e.  RR )
76 1red 9666 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  e.  RR )
7775, 76readdcld 9678 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  RR )
7823ad2ant1 1026 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  NN )
7978nnred 10632 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  RR )
8075lep1d 10546 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  <_  ( y  +  1 ) )
81 simp3 1007 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  <_  M )
8275, 77, 79, 80, 81letrd 9800 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  y  <_  M )
8373, 82jca 534 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( ph  /\  y  <_  M )
)
8470, 71, 72, 83syl3anc 1264 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  ( ph  /\  y  <_  M
) )
85 simplr 760 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
( ph  /\  y  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A ) )
8684, 85mpd 15 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )
87 nfv 1755 . . . . . . . . . . 11  |-  F/ t  y  e.  NN
88 nfv 1755 . . . . . . . . . . 11  |-  F/ t ( y  +  1 )  <_  M
8943, 87, 88nf3an 1990 . . . . . . . . . 10  |-  F/ t ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )
90 simpl2 1009 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  y  e.  NN )
9190, 46syl6eleq 2517 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  y  e.  ( ZZ>= `  1 )
)
92 simpll1 1044 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ph )
93 1zzd 10976 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  1  e.  ZZ )
942nnzd 11047 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
95943ad2ant1 1026 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  M  e.  ZZ )
9695ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  M  e.  ZZ )
97 elfzelz 11808 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  e.  ZZ )
9897adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  ZZ )
99 elfzle1 11810 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  1  <_  i )
10099adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  1  <_  i
)
10197zred 11048 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  e.  RR )
102101adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  RR )
10377ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( y  +  1 )  e.  RR )
10479ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  M  e.  RR )
105 elfzle2 11811 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( y  +  1 ) )  ->  i  <_  ( y  +  1 ) )
106105adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  <_  (
y  +  1 ) )
107 simpll3 1046 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( y  +  1 )  <_  M
)
108102, 103, 104, 106, 107letrd 9800 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  <_  M
)
109 elfz4 11801 . . . . . . . . . . . . . 14  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  M ) )  ->  i  e.  ( 1 ... M
) )
11093, 96, 98, 100, 108, 109syl32anc 1272 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  i  e.  ( 1 ... M ) )
111 simplr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  t  e.  T
)
11245ffvelrnda 6038 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  A )
1131123adant3 1025 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( G `  i )  e.  A )
114 simp1 1005 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ph )
115114, 113jca 534 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( ph  /\  ( G `  i )  e.  A
) )
116 eleq1 2495 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( G `  i )  ->  (
f  e.  A  <->  ( G `  i )  e.  A
) )
117116anbi2d 708 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  i )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  i
)  e.  A ) ) )
118 feq1 5728 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  i )  ->  (
f : T --> RR  <->  ( G `  i ) : T --> RR ) )
119117, 118imbi12d 321 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  i )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  i )  e.  A )  -> 
( G `  i
) : T --> RR ) ) )
120119, 56vtoclg 3139 . . . . . . . . . . . . . . . 16  |-  ( ( G `  i )  e.  A  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
121113, 115, 120sylc 62 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  ( G `  i ) : T --> RR )
122 simp3 1007 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  t  e.  T )
123121, 122ffvelrnd 6039 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( G `  i
) `  t )  e.  RR )
124123recnd 9677 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
)  /\  t  e.  T )  ->  (
( G `  i
) `  t )  e.  CC )
12592, 110, 111, 124syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... ( y  +  1 ) ) )  ->  ( ( G `
 i ) `  t )  e.  CC )
126 fveq2 5882 . . . . . . . . . . . . 13  |-  ( i  =  ( y  +  1 )  ->  ( G `  i )  =  ( G `  ( y  +  1 ) ) )
127126fveq1d 5884 . . . . . . . . . . . 12  |-  ( i  =  ( y  +  1 )  ->  (
( G `  i
) `  t )  =  ( ( G `
 ( y  +  1 ) ) `  t ) )
12891, 125, 127fsump1 13817 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t )  =  (
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
129 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  t  e.  T )
130 fzfid 12193 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
1 ... y )  e. 
Fin )
131 simpll1 1044 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  ph )
132 1zzd 10976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  1  e.  ZZ )
13395ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  M  e.  ZZ )
134 elfzelz 11808 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... y )  ->  i  e.  ZZ )
135134adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  e.  ZZ )
136 elfzle1 11810 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... y )  ->  1  <_  i )
137136adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  1  <_  i
)
138134zred 11048 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1 ... y )  ->  i  e.  RR )
139138adantl 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  e.  RR )
14077adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  (
y  +  1 )  e.  RR )
14179adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  M  e.  RR )
14275adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  y  e.  RR )
143 elfzle2 11811 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 1 ... y )  ->  i  <_  y )
144143adantl 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  y )
145 letrp1 10455 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  RR  /\  y  e.  RR  /\  i  <_  y )  ->  i  <_  ( y  +  1 ) )
146139, 142, 144, 145syl3anc 1264 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  ( y  +  1 ) )
147 simpl3 1010 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  (
y  +  1 )  <_  M )
148139, 140, 141, 146, 147letrd 9800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  i  e.  ( 1 ... y
) )  ->  i  <_  M )
149148adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  <_  M
)
150132, 133, 135, 137, 149, 109syl32anc 1272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  i  e.  ( 1 ... M ) )
151 simplr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  t  e.  T
)
152131, 150, 151, 123syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  NN  /\  (
y  +  1 )  <_  M )  /\  t  e.  T )  /\  i  e.  (
1 ... y ) )  ->  ( ( G `
 i ) `  t )  e.  RR )
153130, 152fsumrecl 13800 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t )  e.  RR )
154 eqid 2422 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )
155154fvmpt2 5974 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  /\  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )  e.  RR )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  =  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )
156129, 153, 155syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  =  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )
157156oveq1d 6321 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) )  =  ( sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t )  +  ( ( G `  (
y  +  1 ) ) `  t ) ) )
158128, 157eqtr4d 2466 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
15989, 158mpteq2da 4509 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) `  t )  +  ( ( G `  (
y  +  1 ) ) `  t ) ) ) )
160159adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
161 1zzd 10976 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  e.  ZZ )
162 peano2nn 10629 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
163162nnzd 11047 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  ZZ )
1641633ad2ant2 1027 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  ZZ )
165162nnge1d 10660 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  1  <_  ( y  +  1 ) )
1661653ad2ant2 1027 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  1  <_  ( y  +  1 ) )
167 elfz4 11801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  ( y  +  1 )  e.  ZZ )  /\  ( 1  <_ 
( y  +  1 )  /\  ( y  +  1 )  <_  M ) )  -> 
( y  +  1 )  e.  ( 1 ... M ) )
168161, 95, 164, 166, 81, 167syl32anc 1272 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( y  +  1 )  e.  ( 1 ... M
) )
16945ffvelrnda 6038 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  ( G `  ( y  +  1 ) )  e.  A )
17073, 168, 169syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( G `  ( y  +  1 ) )  e.  A
)
171 eleq1 2495 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
f  e.  A  <->  ( G `  ( y  +  1 ) )  e.  A
) )
172171anbi2d 708 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  (
y  +  1 ) )  e.  A ) ) )
173 feq1 5728 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
f : T --> RR  <->  ( G `  ( y  +  1 ) ) : T --> RR ) )
174172, 173imbi12d 321 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  ( y  +  1 ) )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  ( y  +  1 ) )  e.  A )  -> 
( G `  (
y  +  1 ) ) : T --> RR ) ) )
175174, 56vtoclg 3139 . . . . . . . . . . . . . . . 16  |-  ( ( G `  ( y  +  1 ) )  e.  A  ->  (
( ph  /\  ( G `  ( y  +  1 ) )  e.  A )  -> 
( G `  (
y  +  1 ) ) : T --> RR ) )
176175anabsi7 826 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( G `  ( y  +  1 ) )  e.  A
)  ->  ( G `  ( y  +  1 ) ) : T --> RR )
17773, 170, 176syl2anc 665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( G `  ( y  +  1 ) ) : T --> RR )
178177ffvelrnda 6038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( G `  (
y  +  1 ) ) `  t )  e.  RR )
179 eqid 2422 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) )  =  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) )
180179fvmpt2 5974 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  /\  ( ( G `  ( y  +  1 ) ) `  t
)  e.  RR )  ->  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t )  =  ( ( G `  ( y  +  1 ) ) `  t
) )
181129, 178, 180syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) ) `  t
)  =  ( ( G `  ( y  +  1 ) ) `
 t ) )
182181oveq2d 6322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) )
18389, 182mpteq2da 4509 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) `  t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
184183adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) ) `  t
)  +  ( ( G `  ( y  +  1 ) ) `
 t ) ) ) )
185 simpl1 1008 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ph )
186 simpr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
)
187168adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( y  +  1 )  e.  ( 1 ... M ) )
188176feqmptd 5935 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( G `  ( y  +  1 ) )  e.  A
)  ->  ( G `  ( y  +  1 ) )  =  ( t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) ) )
189169, 188syldan 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  ( G `  ( y  +  1 ) )  =  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) ) )
190189, 169eqeltrrd 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  +  1 )  e.  ( 1 ... M
) )  ->  (
t  e.  T  |->  ( ( G `  (
y  +  1 ) ) `  t ) )  e.  A )
191185, 187, 190syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( G `
 ( y  +  1 ) ) `  t ) )  e.  A )
192 stoweidlem20.5 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
193 nfmpt1 4513 . . . . . . . . . . 11  |-  F/_ t
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )
194 nfmpt1 4513 . . . . . . . . . . 11  |-  F/_ t
( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) )
195192, 193, 194stoweidlem8 37809 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) )  e.  A  /\  ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) )  e.  A )  -> 
( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y
) ( ( G `
 i ) `  t ) ) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `  t
) ) `  t
) ) )  e.  A )
196185, 186, 191, 195syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( t  e.  T  |->  ( ( G `  ( y  +  1 ) ) `
 t ) ) `
 t ) ) )  e.  A )
197184, 196eqeltrrd 2508 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
) `  t )  +  ( ( G `
 ( y  +  1 ) ) `  t ) ) )  e.  A )
198160, 197eqeltrd 2507 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN  /\  ( y  +  1 )  <_  M )  /\  (
t  e.  T  |->  sum_ i  e.  ( 1 ... y ) ( ( G `  i
) `  t )
)  e.  A )  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i ) `  t
) )  e.  A
)
19970, 71, 72, 86, 198syl31anc 1267 . . . . . 6  |-  ( ( ( y  e.  NN  /\  ( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
) )  /\  ( ph  /\  ( y  +  1 )  <_  M
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... ( y  +  1 ) ) ( ( G `  i
) `  t )
)  e.  A )
200199exp31 607 . . . . 5  |-  ( y  e.  NN  ->  (
( ( ph  /\  y  <_  M )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... y ) ( ( G `  i ) `  t
) )  e.  A
)  ->  ( ( ph  /\  ( y  +  1 )  <_  M
)  ->  ( t  e.  T  |->  sum_ i  e.  ( 1 ... (
y  +  1 ) ) ( ( G `
 i ) `  t ) )  e.  A ) ) )
20121, 28, 35, 42, 69, 200nnind 10635 . . . 4  |-  ( n  e.  NN  ->  (
( ph  /\  n  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... n ) ( ( G `  i
) `  t )
)  e.  A ) )
20214, 201vtoclg 3139 . . 3  |-  ( M  e.  NN  ->  ( M  e.  NN  ->  ( ( ph  /\  M  <_  M )  ->  (
t  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)  e.  A ) ) )
2032, 2, 5, 202syl3c 63 . 2  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )  e.  A
)
2041, 203syl5eqel 2511 1  |-  ( ph  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   F/wnf 1661    e. wcel 1872   class class class wbr 4423    |-> cmpt 4482   -->wf 5597   ` cfv 5601  (class class class)co 6306   CCcc 9545   RRcr 9546   1c1 9548    + caddc 9550    <_ cle 9684   NNcn 10617   ZZcz 10945   ZZ>=cuz 11167   ...cfz 11792   sum_csu 13752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-inf2 8156  ax-cnex 9603  ax-resscn 9604  ax-1cn 9605  ax-icn 9606  ax-addcl 9607  ax-addrcl 9608  ax-mulcl 9609  ax-mulrcl 9610  ax-mulcom 9611  ax-addass 9612  ax-mulass 9613  ax-distr 9614  ax-i2m1 9615  ax-1ne0 9616  ax-1rid 9617  ax-rnegex 9618  ax-rrecex 9619  ax-cnre 9620  ax-pre-lttri 9621  ax-pre-lttrn 9622  ax-pre-ltadd 9623  ax-pre-mulgt0 9624  ax-pre-sup 9625
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-om 6708  df-1st 6808  df-2nd 6809  df-wrecs 7040  df-recs 7102  df-rdg 7140  df-1o 7194  df-oadd 7198  df-er 7375  df-en 7582  df-dom 7583  df-sdom 7584  df-fin 7585  df-sup 7966  df-oi 8035  df-card 8382  df-pnf 9685  df-mnf 9686  df-xr 9687  df-ltxr 9688  df-le 9689  df-sub 9870  df-neg 9871  df-div 10278  df-nn 10618  df-2 10676  df-3 10677  df-n0 10878  df-z 10946  df-uz 11168  df-rp 11311  df-fz 11793  df-fzo 11924  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13163  df-re 13164  df-im 13165  df-sqrt 13299  df-abs 13300  df-clim 13552  df-sum 13753
This theorem is referenced by:  stoweidlem32  37834
  Copyright terms: Public domain W3C validator