Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem19 Structured version   Unicode version

Theorem stoweidlem19 37448
Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem19.1  |-  F/_ t F
stoweidlem19.2  |-  F/ t
ph
stoweidlem19.3  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem19.4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem19.5  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem19.6  |-  ( ph  ->  F  e.  A )
stoweidlem19.7  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
stoweidlem19  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ N
) )  e.  A
)
Distinct variable groups:    f, g,
t, A    f, F, g    T, f, g, t    ph, f, g    t, N   
x, t, A    x, T    ph, x
Allowed substitution hints:    ph( t)    F( x, t)    N( x, f, g)

Proof of Theorem stoweidlem19
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem19.7 . 2  |-  ( ph  ->  N  e.  NN0 )
2 oveq2 6313 . . . . . 6  |-  ( n  =  0  ->  (
( F `  t
) ^ n )  =  ( ( F `
 t ) ^
0 ) )
32mpteq2dv 4513 . . . . 5  |-  ( n  =  0  ->  (
t  e.  T  |->  ( ( F `  t
) ^ n ) )  =  ( t  e.  T  |->  ( ( F `  t ) ^ 0 ) ) )
43eleq1d 2498 . . . 4  |-  ( n  =  0  ->  (
( t  e.  T  |->  ( ( F `  t ) ^ n
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
) ^ 0 ) )  e.  A ) )
54imbi2d 317 . . 3  |-  ( n  =  0  ->  (
( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ n ) )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ 0 ) )  e.  A
) ) )
6 oveq2 6313 . . . . . 6  |-  ( n  =  m  ->  (
( F `  t
) ^ n )  =  ( ( F `
 t ) ^
m ) )
76mpteq2dv 4513 . . . . 5  |-  ( n  =  m  ->  (
t  e.  T  |->  ( ( F `  t
) ^ n ) )  =  ( t  e.  T  |->  ( ( F `  t ) ^ m ) ) )
87eleq1d 2498 . . . 4  |-  ( n  =  m  ->  (
( t  e.  T  |->  ( ( F `  t ) ^ n
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )
98imbi2d 317 . . 3  |-  ( n  =  m  ->  (
( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ n ) )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ m
) )  e.  A
) ) )
10 oveq2 6313 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  t
) ^ n )  =  ( ( F `
 t ) ^
( m  +  1 ) ) )
1110mpteq2dv 4513 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
t  e.  T  |->  ( ( F `  t
) ^ n ) )  =  ( t  e.  T  |->  ( ( F `  t ) ^ ( m  + 
1 ) ) ) )
1211eleq1d 2498 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( t  e.  T  |->  ( ( F `  t ) ^ n
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
) ^ ( m  +  1 ) ) )  e.  A ) )
1312imbi2d 317 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ n ) )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ (
m  +  1 ) ) )  e.  A
) ) )
14 oveq2 6313 . . . . . 6  |-  ( n  =  N  ->  (
( F `  t
) ^ n )  =  ( ( F `
 t ) ^ N ) )
1514mpteq2dv 4513 . . . . 5  |-  ( n  =  N  ->  (
t  e.  T  |->  ( ( F `  t
) ^ n ) )  =  ( t  e.  T  |->  ( ( F `  t ) ^ N ) ) )
1615eleq1d 2498 . . . 4  |-  ( n  =  N  ->  (
( t  e.  T  |->  ( ( F `  t ) ^ n
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
) ^ N ) )  e.  A ) )
1716imbi2d 317 . . 3  |-  ( n  =  N  ->  (
( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ n ) )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ N
) )  e.  A
) ) )
18 stoweidlem19.2 . . . . 5  |-  F/ t
ph
19 stoweidlem19.6 . . . . . . . . 9  |-  ( ph  ->  F  e.  A )
2019ancli 553 . . . . . . . . 9  |-  ( ph  ->  ( ph  /\  F  e.  A ) )
21 eleq1 2501 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
2221anbi2d 708 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  F  e.  A ) ) )
23 feq1 5728 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f : T --> RR  <->  F : T
--> RR ) )
2422, 23imbi12d 321 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  F  e.  A )  ->  F : T --> RR ) ) )
25 stoweidlem19.3 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2624, 25vtoclg 3145 . . . . . . . . 9  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A )  ->  F : T --> RR ) )
2719, 20, 26sylc 62 . . . . . . . 8  |-  ( ph  ->  F : T --> RR )
2827fnvinran 36975 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
29 recn 9628 . . . . . . 7  |-  ( ( F `  t )  e.  RR  ->  ( F `  t )  e.  CC )
30 exp0 12273 . . . . . . 7  |-  ( ( F `  t )  e.  CC  ->  (
( F `  t
) ^ 0 )  =  1 )
3128, 29, 303syl 18 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
) ^ 0 )  =  1 )
3231eqcomd 2437 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  1  =  ( ( F `
 t ) ^
0 ) )
3318, 32mpteq2da 4511 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  1 )  =  ( t  e.  T  |->  ( ( F `  t
) ^ 0 ) ) )
34 1re 9641 . . . . 5  |-  1  e.  RR
35 stoweidlem19.5 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
3635stoweidlem4 37433 . . . . 5  |-  ( (
ph  /\  1  e.  RR )  ->  ( t  e.  T  |->  1 )  e.  A )
3734, 36mpan2 675 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
3833, 37eqeltrrd 2518 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ 0 ) )  e.  A
)
39 simpr 462 . . . . 5  |-  ( ( ( m  e.  NN0  /\  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )  /\  ph )  ->  ph )
40 simpll 758 . . . . 5  |-  ( ( ( m  e.  NN0  /\  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )  /\  ph )  ->  m  e.  NN0 )
41 simplr 760 . . . . . 6  |-  ( ( ( m  e.  NN0  /\  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )  /\  ph )  ->  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )
4239, 41mpd 15 . . . . 5  |-  ( ( ( m  e.  NN0  /\  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )  /\  ph )  ->  ( t  e.  T  |->  ( ( F `  t ) ^ m
) )  e.  A
)
43 nfv 1754 . . . . . . . 8  |-  F/ t  m  e.  NN0
44 nfmpt1 4515 . . . . . . . . 9  |-  F/_ t
( t  e.  T  |->  ( ( F `  t ) ^ m
) )
4544nfel1 2607 . . . . . . . 8  |-  F/ t ( t  e.  T  |->  ( ( F `  t ) ^ m
) )  e.  A
4618, 43, 45nf3an 1988 . . . . . . 7  |-  F/ t ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )
47 simpl1 1008 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ph )
48 simpr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  t  e.  T )
4928recnd 9668 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
5047, 48, 49syl2anc 665 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ( F `  t
)  e.  CC )
51 simpl2 1009 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  m  e.  NN0 )
5250, 51expp1d 12414 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ( ( F `  t ) ^ (
m  +  1 ) )  =  ( ( ( F `  t
) ^ m )  x.  ( F `  t ) ) )
5346, 52mpteq2da 4511 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 
/\  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
) ^ ( m  +  1 ) ) )  =  ( t  e.  T  |->  ( ( ( F `  t
) ^ m )  x.  ( F `  t ) ) ) )
54283adant2 1024 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 
/\  t  e.  T
)  ->  ( F `  t )  e.  RR )
55 simp2 1006 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 
/\  t  e.  T
)  ->  m  e.  NN0 )
5654, 55reexpcld 12430 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 
/\  t  e.  T
)  ->  ( ( F `  t ) ^ m )  e.  RR )
5747, 51, 48, 56syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ( ( F `  t ) ^ m
)  e.  RR )
58 eqid 2429 . . . . . . . . . . . 12  |-  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  =  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )
5958fvmpt2 5973 . . . . . . . . . . 11  |-  ( ( t  e.  T  /\  ( ( F `  t ) ^ m
)  e.  RR )  ->  ( ( t  e.  T  |->  ( ( F `  t ) ^ m ) ) `
 t )  =  ( ( F `  t ) ^ m
) )
6059eqcomd 2437 . . . . . . . . . 10  |-  ( ( t  e.  T  /\  ( ( F `  t ) ^ m
)  e.  RR )  ->  ( ( F `
 t ) ^
m )  =  ( ( t  e.  T  |->  ( ( F `  t ) ^ m
) ) `  t
) )
6148, 57, 60syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ( ( F `  t ) ^ m
)  =  ( ( t  e.  T  |->  ( ( F `  t
) ^ m ) ) `  t ) )
6261oveq1d 6320 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  /\  t  e.  T )  ->  ( ( ( F `
 t ) ^
m )  x.  ( F `  t )
)  =  ( ( ( t  e.  T  |->  ( ( F `  t ) ^ m
) ) `  t
)  x.  ( F `
 t ) ) )
6346, 62mpteq2da 4511 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 
/\  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  (
t  e.  T  |->  ( ( ( F `  t ) ^ m
)  x.  ( F `
 t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  ( ( F `  t ) ^ m
) ) `  t
)  x.  ( F `
 t ) ) ) )
6419adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  ->  F  e.  A )
6544nfeq2 2608 . . . . . . . . . 10  |-  F/ t  f  =  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )
66 stoweidlem19.1 . . . . . . . . . . 11  |-  F/_ t F
6766nfeq2 2608 . . . . . . . . . 10  |-  F/ t  g  =  F
68 stoweidlem19.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6965, 67, 68stoweidlem6 37435 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A  /\  F  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  ( ( F `
 t ) ^
m ) ) `  t )  x.  ( F `  t )
) )  e.  A
)
7064, 69mpd3an3 1361 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  T  |->  ( ( F `  t ) ^ m ) )  e.  A )  -> 
( t  e.  T  |->  ( ( ( t  e.  T  |->  ( ( F `  t ) ^ m ) ) `
 t )  x.  ( F `  t
) ) )  e.  A )
71703adant2 1024 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 
/\  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  ( ( F `
 t ) ^
m ) ) `  t )  x.  ( F `  t )
) )  e.  A
)
7263, 71eqeltrd 2517 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 
/\  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  (
t  e.  T  |->  ( ( ( F `  t ) ^ m
)  x.  ( F `
 t ) ) )  e.  A )
7353, 72eqeltrd 2517 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 
/\  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
) ^ ( m  +  1 ) ) )  e.  A )
7439, 40, 42, 73syl3anc 1264 . . . 4  |-  ( ( ( m  e.  NN0  /\  ( ph  ->  (
t  e.  T  |->  ( ( F `  t
) ^ m ) )  e.  A ) )  /\  ph )  ->  ( t  e.  T  |->  ( ( F `  t ) ^ (
m  +  1 ) ) )  e.  A
)
7574exp31 607 . . 3  |-  ( m  e.  NN0  ->  ( (
ph  ->  ( t  e.  T  |->  ( ( F `
 t ) ^
m ) )  e.  A )  ->  ( ph  ->  ( t  e.  T  |->  ( ( F `
 t ) ^
( m  +  1 ) ) )  e.  A ) ) )
765, 9, 13, 17, 38, 75nn0ind 11030 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ N
) )  e.  A
) )
771, 76mpcom 37 1  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ N
) )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   F/wnf 1663    e. wcel 1870   F/_wnfc 2577    |-> cmpt 4484   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   NN0cn0 10869   ^cexp 12269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-seq 12211  df-exp 12270
This theorem is referenced by:  stoweidlem40  37470
  Copyright terms: Public domain W3C validator