Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Unicode version

Theorem stoweidlem18 27428
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1  |-  F/_ t D
stoweidlem18.2  |-  F/ t
ph
stoweidlem18.3  |-  F  =  ( t  e.  T  |->  1 )
stoweidlem18.4  |-  T  = 
U. J
stoweidlem18.5  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
stoweidlem18.6  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
stoweidlem18.7  |-  ( ph  ->  E  e.  RR+ )
stoweidlem18.8  |-  ( ph  ->  D  =  (/) )
Assertion
Ref Expression
stoweidlem18  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Distinct variable groups:    t, a, T    A, a    ph, a    x, t    x, A    x, B    x, D    x, E    x, F    x, T
Allowed substitution hints:    ph( x, t)    A( t)    B( t, a)    D( t, a)    E( t, a)    F( t, a)    J( x, t, a)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3  |-  F  =  ( t  e.  T  |->  1 )
2 1re 9016 . . . 4  |-  1  e.  RR
3 stoweidlem18.5 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
43stoweidlem4 27414 . . . 4  |-  ( (
ph  /\  1  e.  RR )  ->  ( t  e.  T  |->  1 )  e.  A )
52, 4mpan2 653 . . 3  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
61, 5syl5eqel 2464 . 2  |-  ( ph  ->  F  e.  A )
7 stoweidlem18.2 . . 3  |-  F/ t
ph
8 0le1 9476 . . . . . 6  |-  0  <_  1
9 simpr 448 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
101fvmpt2 5744 . . . . . . 7  |-  ( ( t  e.  T  /\  1  e.  RR )  ->  ( F `  t
)  =  1 )
119, 2, 10sylancl 644 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  1 )
128, 11syl5breqr 4182 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  0  <_  ( F `  t
) )
13 1le1 9575 . . . . . 6  |-  1  <_  1
1411, 13syl6eqbr 4183 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  <_  1 )
1512, 14jca 519 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <_  ( F `  t )  /\  ( F `  t )  <_  1 ) )
1615ex 424 . . 3  |-  ( ph  ->  ( t  e.  T  ->  ( 0  <_  ( F `  t )  /\  ( F `  t
)  <_  1 ) ) )
177, 16ralrimi 2723 . 2  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( F `  t )  /\  ( F `  t
)  <_  1 ) )
18 stoweidlem18.8 . . 3  |-  ( ph  ->  D  =  (/) )
19 stoweidlem18.1 . . . . 5  |-  F/_ t D
20 nfcv 2516 . . . . 5  |-  F/_ t (/)
2119, 20nfeq 2523 . . . 4  |-  F/ t  D  =  (/)
2221rzalf 27349 . . 3  |-  ( D  =  (/)  ->  A. t  e.  D  ( F `  t )  <  E
)
2318, 22syl 16 . 2  |-  ( ph  ->  A. t  e.  D  ( F `  t )  <  E )
242a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
25 stoweidlem18.7 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
2624, 25ltsubrpd 10601 . . . . . 6  |-  ( ph  ->  ( 1  -  E
)  <  1 )
2726adantr 452 . . . . 5  |-  ( (
ph  /\  t  e.  B )  ->  (
1  -  E )  <  1 )
28 stoweidlem18.6 . . . . . . . 8  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
29 stoweidlem18.4 . . . . . . . . 9  |-  T  = 
U. J
3029cldss 17009 . . . . . . . 8  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  T
)
3128, 30syl 16 . . . . . . 7  |-  ( ph  ->  B  C_  T )
3231sselda 3284 . . . . . 6  |-  ( (
ph  /\  t  e.  B )  ->  t  e.  T )
3332, 2, 10sylancl 644 . . . . 5  |-  ( (
ph  /\  t  e.  B )  ->  ( F `  t )  =  1 )
3427, 33breqtrrd 4172 . . . 4  |-  ( (
ph  /\  t  e.  B )  ->  (
1  -  E )  <  ( F `  t ) )
3534ex 424 . . 3  |-  ( ph  ->  ( t  e.  B  ->  ( 1  -  E
)  <  ( F `  t ) ) )
367, 35ralrimi 2723 . 2  |-  ( ph  ->  A. t  e.  B  ( 1  -  E
)  <  ( F `  t ) )
37 nfcv 2516 . . . . . 6  |-  F/_ t
x
38 nfmpt1 4232 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  1 )
391, 38nfcxfr 2513 . . . . . 6  |-  F/_ t F
4037, 39nfeq 2523 . . . . 5  |-  F/ t  x  =  F
41 fveq1 5660 . . . . . . 7  |-  ( x  =  F  ->  (
x `  t )  =  ( F `  t ) )
4241breq2d 4158 . . . . . 6  |-  ( x  =  F  ->  (
0  <_  ( x `  t )  <->  0  <_  ( F `  t ) ) )
4341breq1d 4156 . . . . . 6  |-  ( x  =  F  ->  (
( x `  t
)  <_  1  <->  ( F `  t )  <_  1
) )
4442, 43anbi12d 692 . . . . 5  |-  ( x  =  F  ->  (
( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  <-> 
( 0  <_  ( F `  t )  /\  ( F `  t
)  <_  1 ) ) )
4540, 44ralbid 2660 . . . 4  |-  ( x  =  F  ->  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( F `  t )  /\  ( F `  t
)  <_  1 ) ) )
4641breq1d 4156 . . . . 5  |-  ( x  =  F  ->  (
( x `  t
)  <  E  <->  ( F `  t )  <  E
) )
4740, 46ralbid 2660 . . . 4  |-  ( x  =  F  ->  ( A. t  e.  D  ( x `  t
)  <  E  <->  A. t  e.  D  ( F `  t )  <  E
) )
4841breq2d 4158 . . . . 5  |-  ( x  =  F  ->  (
( 1  -  E
)  <  ( x `  t )  <->  ( 1  -  E )  < 
( F `  t
) ) )
4940, 48ralbid 2660 . . . 4  |-  ( x  =  F  ->  ( A. t  e.  B  ( 1  -  E
)  <  ( x `  t )  <->  A. t  e.  B  ( 1  -  E )  < 
( F `  t
) ) )
5045, 47, 493anbi123d 1254 . . 3  |-  ( x  =  F  ->  (
( A. t  e.  T  ( 0  <_ 
( x `  t
)  /\  ( x `  t )  <_  1
)  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) )  <->  ( A. t  e.  T  (
0  <_  ( F `  t )  /\  ( F `  t )  <_  1 )  /\  A. t  e.  D  ( F `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  < 
( F `  t
) ) ) )
5150rspcev 2988 . 2  |-  ( ( F  e.  A  /\  ( A. t  e.  T  ( 0  <_  ( F `  t )  /\  ( F `  t
)  <_  1 )  /\  A. t  e.  D  ( F `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( F `  t ) ) )  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
526, 17, 23, 36, 51syl13anc 1186 1  |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E
)  <  ( x `  t ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2503   A.wral 2642   E.wrex 2643    C_ wss 3256   (/)c0 3564   U.cuni 3950   class class class wbr 4146    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   RRcr 8915   0cc0 8916   1c1 8917    < clt 9046    <_ cle 9047    - cmin 9216   RR+crp 10537   Clsdccld 16996
This theorem is referenced by:  stoweidlem58  27468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-rp 10538  df-top 16879  df-cld 16999
  Copyright terms: Public domain W3C validator