Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem17 Structured version   Unicode version

Theorem stoweidlem17 29838
Description: This lemma proves that the function  g (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem17.1  |-  F/ t
ph
stoweidlem17.2  |-  ( ph  ->  N  e.  NN )
stoweidlem17.3  |-  ( ph  ->  X : ( 0 ... N ) --> A )
stoweidlem17.4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem17.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem17.6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem17.7  |-  ( ph  ->  E  e.  RR )
stoweidlem17.8  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem17  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
Distinct variable groups:    f, g,
i, t, E    A, f, g    T, f, g, i, t    f, X, g, i, t    ph, f,
g, i    i, N, t    x, t, E    x, A    x, T    ph, x
Allowed substitution hints:    ph( t)    A( t, i)    N( x, f, g)    X( x)

Proof of Theorem stoweidlem17
Dummy variables  m  r  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem17.2 . . 3  |-  ( ph  ->  N  e.  NN )
21nnnn0d 10657 . 2  |-  ( ph  ->  N  e.  NN0 )
3 nn0uz 10916 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
42, 3syl6eleq 2533 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
5 eluzfz2 11480 . . . 4  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
64, 5syl 16 . . 3  |-  ( ph  ->  N  e.  ( 0 ... N ) )
76ancli 551 . 2  |-  ( ph  ->  ( ph  /\  N  e.  ( 0 ... N
) ) )
8 eleq1 2503 . . . . 5  |-  ( n  =  0  ->  (
n  e.  ( 0 ... N )  <->  0  e.  ( 0 ... N
) ) )
98anbi2d 703 . . . 4  |-  ( n  =  0  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  0  e.  ( 0 ... N ) ) ) )
10 oveq2 6120 . . . . . . 7  |-  ( n  =  0  ->  (
0 ... n )  =  ( 0 ... 0
) )
1110sumeq1d 13199 . . . . . 6  |-  ( n  =  0  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )
1211mpteq2dv 4400 . . . . 5  |-  ( n  =  0  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
1312eleq1d 2509 . . . 4  |-  ( n  =  0  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
149, 13imbi12d 320 . . 3  |-  ( n  =  0  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  0  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
15 eleq1 2503 . . . . 5  |-  ( n  =  m  ->  (
n  e.  ( 0 ... N )  <->  m  e.  ( 0 ... N
) ) )
1615anbi2d 703 . . . 4  |-  ( n  =  m  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  m  e.  ( 0 ... N ) ) ) )
17 oveq2 6120 . . . . . . 7  |-  ( n  =  m  ->  (
0 ... n )  =  ( 0 ... m
) )
1817sumeq1d 13199 . . . . . 6  |-  ( n  =  m  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
1918mpteq2dv 4400 . . . . 5  |-  ( n  =  m  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
2019eleq1d 2509 . . . 4  |-  ( n  =  m  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2116, 20imbi12d 320 . . 3  |-  ( n  =  m  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
22 eleq1 2503 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
n  e.  ( 0 ... N )  <->  ( m  +  1 )  e.  ( 0 ... N
) ) )
2322anbi2d 703 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) ) )
24 oveq2 6120 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
0 ... n )  =  ( 0 ... (
m  +  1 ) ) )
2524sumeq1d 13199 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )
2625mpteq2dv 4400 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) ) )
2726eleq1d 2509 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2823, 27imbi12d 320 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
29 eleq1 2503 . . . . 5  |-  ( n  =  N  ->  (
n  e.  ( 0 ... N )  <->  N  e.  ( 0 ... N
) ) )
3029anbi2d 703 . . . 4  |-  ( n  =  N  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  N  e.  ( 0 ... N ) ) ) )
31 oveq2 6120 . . . . . . 7  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
3231sumeq1d 13199 . . . . . 6  |-  ( n  =  N  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )
3332mpteq2dv 4400 . . . . 5  |-  ( n  =  N  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
3433eleq1d 2509 . . . 4  |-  ( n  =  N  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
3530, 34imbi12d 320 . . 3  |-  ( n  =  N  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  N  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
36 0z 10678 . . . . . . . . 9  |-  0  e.  ZZ
37 fzsn 11521 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( 0 ... 0 )  =  { 0 }
3938sumeq1i 13196 . . . . . . 7  |-  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  { 0 }  ( E  x.  ( ( X `  i ) `  t
) )
4039mpteq2i 4396 . . . . . 6  |-  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) ) )
41 stoweidlem17.1 . . . . . . 7  |-  F/ t
ph
42 stoweidlem17.7 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR )
4342adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  E  e.  RR )
4443recnd 9433 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  E  e.  CC )
45 stoweidlem17.3 . . . . . . . . . . . . 13  |-  ( ph  ->  X : ( 0 ... N ) --> A )
46 nnz 10689 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  ZZ )
47 nngt0 10372 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  <  N )
48 0re 9407 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
49 nnre 10350 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
50 ltle 9484 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
5148, 49, 50sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  (
0  <  N  ->  0  <_  N ) )
5247, 51mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  N )
5346, 52jca 532 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  0  <_  N ) )
541, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  e.  ZZ  /\  0  <_  N )
)
5536eluz1i 10889 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  0
)  <->  ( N  e.  ZZ  /\  0  <_  N ) )
5654, 55sylibr 212 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
57 eluzfz1 11479 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... N
) )
5856, 57syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ( 0 ... N ) )
5945, 58ffvelrnd 5865 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  0
)  e.  A )
60 feq1 5563 . . . . . . . . . . . . . 14  |-  ( f  =  ( X ` 
0 )  ->  (
f : T --> RR  <->  ( X `  0 ) : T --> RR ) )
6160imbi2d 316 . . . . . . . . . . . . 13  |-  ( f  =  ( X ` 
0 )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  0
) : T --> RR ) ) )
62 stoweidlem17.8 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
6362expcom 435 . . . . . . . . . . . . 13  |-  ( f  e.  A  ->  ( ph  ->  f : T --> RR ) )
6461, 63vtoclga 3057 . . . . . . . . . . . 12  |-  ( ( X `  0 )  e.  A  ->  ( ph  ->  ( X ` 
0 ) : T --> RR ) )
6559, 64mpcom 36 . . . . . . . . . . 11  |-  ( ph  ->  ( X `  0
) : T --> RR )
6665fnvinran 29762 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
( X `  0
) `  t )  e.  RR )
6766recnd 9433 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
( X `  0
) `  t )  e.  CC )
6844, 67mulcld 9427 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( E  x.  ( ( X `  0 ) `  t ) )  e.  CC )
69 fveq2 5712 . . . . . . . . . . 11  |-  ( i  =  0  ->  ( X `  i )  =  ( X ` 
0 ) )
7069fveq1d 5714 . . . . . . . . . 10  |-  ( i  =  0  ->  (
( X `  i
) `  t )  =  ( ( X `
 0 ) `  t ) )
7170oveq2d 6128 . . . . . . . . 9  |-  ( i  =  0  ->  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7271sumsn 13238 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  ( E  x.  (
( X `  0
) `  t )
)  e.  CC )  ->  sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7336, 68, 72sylancr 663 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  { 0 }  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7441, 73mpteq2da 4398 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X ` 
0 ) `  t
) ) ) )
7540, 74syl5eq 2487 . . . . 5  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  0 ) `
 t ) ) ) )
76 stoweidlem17.5 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
77 stoweidlem17.6 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
7841, 76, 77, 62, 42, 59stoweidlem2 29823 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( E  x.  (
( X `  0
) `  t )
) )  e.  A
)
7975, 78eqeltrd 2517 . . . 4  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
8079adantr 465 . . 3  |-  ( (
ph  /\  0  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )
81 eqidd 2444 . . . . . . . . . . . . . . . 16  |-  ( r  =  t  ->  E  =  E )
8281cbvmptv 4404 . . . . . . . . . . . . . . 15  |-  ( r  e.  T  |->  E )  =  ( t  e.  T  |->  E )
8382eqcomi 2447 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  E )  =  ( r  e.  T  |->  E )
8483a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  (
t  e.  T  |->  E )  =  ( r  e.  T  |->  E ) )
85 eqidd 2444 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  T )  /\  r  =  t )  ->  E  =  E )
86 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
8784, 85, 86, 43fvmptd 5800 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  T )  ->  (
( t  e.  T  |->  E ) `  t
)  =  E )
8887oveq1d 6127 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) )  =  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )
8941, 88mpteq2da 4398 . . . . . . . . . 10  |-  ( ph  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  =  ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) )
9089adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) )
9145fnvinran 29762 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ( X `  ( m  +  1 ) )  e.  A )
92 simpl 457 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ph )
93 id 22 . . . . . . . . . . . . . . . 16  |-  ( x  =  E  ->  x  =  E )
9493mpteq2dv 4400 . . . . . . . . . . . . . . 15  |-  ( x  =  E  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  E ) )
9594eleq1d 2509 . . . . . . . . . . . . . 14  |-  ( x  =  E  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  E )  e.  A ) )
9695imbi2d 316 . . . . . . . . . . . . 13  |-  ( x  =  E  ->  (
( ph  ->  ( t  e.  T  |->  x )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  E )  e.  A
) ) )
9777expcom 435 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  x )  e.  A ) )
9896, 97vtoclga 3057 . . . . . . . . . . . 12  |-  ( E  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  E )  e.  A ) )
9942, 98mpcom 36 . . . . . . . . . . 11  |-  ( ph  ->  ( t  e.  T  |->  E )  e.  A
)
10099adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  E )  e.  A )
101 fveq1 5711 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
g `  t )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
102101oveq2d 6128 . . . . . . . . . . . . . . 15  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
)  =  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )
103102mpteq2dv 4400 . . . . . . . . . . . . . 14  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) )
104103eleq1d 2509 . . . . . . . . . . . . 13  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A ) )
105104imbi2d 316 . . . . . . . . . . . 12  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( ( ph  /\  ( t  e.  T  |->  E )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )  e.  A )  <-> 
( ( ph  /\  ( t  e.  T  |->  E )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A ) ) )
10682eleq1i 2506 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  T  |->  E )  e.  A  <->  ( t  e.  T  |->  E )  e.  A )
107 fveq1 5711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( f `  t
)  =  ( ( r  e.  T  |->  E ) `  t ) )
10882fveq1i 5713 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  T  |->  E ) `  t )  =  ( ( t  e.  T  |->  E ) `
 t )
109107, 108syl6eq 2491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( f `  t
)  =  ( ( t  e.  T  |->  E ) `  t ) )
110109oveq1d 6127 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( f `  t )  x.  (
g `  t )
)  =  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )
111110mpteq2dv 4400 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) ) )
112111eleq1d 2509 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( t  e.  T  |->  ( ( f `
 t )  x.  ( g `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( g `  t ) ) )  e.  A ) )
113112imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `
 t )  x.  ( g `  t
) ) )  e.  A )  <->  ( ( ph  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )  e.  A ) ) )
114763com12 1191 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  A  /\  ph 
/\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
1151143expib 1190 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  A  ->  (
( ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
116113, 115vtoclga 3057 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  T  |->  E )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A ) )
117106, 116sylbir 213 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  T  |->  E )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A ) )
1181173impib 1185 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  T  |->  E )  e.  A  /\  ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  e.  A
)
1191183com13 1192 . . . . . . . . . . . . 13  |-  ( ( g  e.  A  /\  ph 
/\  ( t  e.  T  |->  E )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  e.  A
)
1201193expib 1190 . . . . . . . . . . . 12  |-  ( g  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  E )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( g `  t ) ) )  e.  A ) )
121105, 120vtoclga 3057 . . . . . . . . . . 11  |-  ( ( X `  ( m  +  1 ) )  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  E )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A ) )
1221213impib 1185 . . . . . . . . . 10  |-  ( ( ( X `  (
m  +  1 ) )  e.  A  /\  ph 
/\  ( t  e.  T  |->  E )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A
)
12391, 92, 100, 122syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A
)
12490, 123eqeltrrd 2518 . . . . . . . 8  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A )
125124ad2antll 728 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  e.  A )
126 simprrl 763 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ph )
127 simpl 457 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  NN0 )
128 simprl 755 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  ph )
1291ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  NN )
130129nnnn0d 10657 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  NN0 )
131 nn0re 10609 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  m  e.  RR )
132131adantr 465 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  RR )
133 peano2nn0 10641 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
134133nn0red 10658 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  RR )
135134adantr 465 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  +  1 )  e.  RR )
1361nnred 10358 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
137136ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  RR )
138 lep1 10189 . . . . . . . . . . . . 13  |-  ( m  e.  RR  ->  m  <_  ( m  +  1 ) )
139127, 131, 1383syl 20 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  <_  ( m  + 
1 ) )
140 elfzle2 11476 . . . . . . . . . . . . 13  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
m  +  1 )  <_  N )
141140ad2antll 728 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  +  1 )  <_  N )
142132, 135, 137, 139, 141letrd 9549 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  <_  N )
143 elfz2nn0 11501 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  <->  ( m  e.  NN0  /\  N  e. 
NN0  /\  m  <_  N ) )
144127, 130, 142, 143syl3anbrc 1172 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  ( 0 ... N ) )
145127, 128, 144jca32 535 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N
) ) ) )
146145adantl 466 . . . . . . . 8  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( m  e. 
NN0  /\  ( ph  /\  m  e.  ( 0 ... N ) ) ) )
147 pm3.31 445 . . . . . . . . 9  |-  ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )  ->  ( (
m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N
) ) )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )
148147adantr 465 . . . . . . . 8  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( ( m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N ) ) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
149146, 148mpd 15 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
150 fveq2 5712 . . . . . . . . . . . 12  |-  ( r  =  t  ->  (
( X `  (
m  +  1 ) ) `  r )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
151150oveq2d 6128 . . . . . . . . . . 11  |-  ( r  =  t  ->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) )  =  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
152151cbvmptv 4404 . . . . . . . . . 10  |-  ( r  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  r ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
153152eleq1i 2506 . . . . . . . . 9  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) )  e.  A  <->  ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A )
154 fveq1 5711 . . . . . . . . . . . . . . 15  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( g `  t
)  =  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) ) `  t ) )
155152fveq1i 5713 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) ) `  t )  =  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t )
156154, 155syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( g `  t
)  =  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) )
157156oveq2d 6128 . . . . . . . . . . . . 13  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )
158157mpteq2dv 4400 . . . . . . . . . . . 12  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) ) )
159158eleq1d 2509 . . . . . . . . . . 11  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
160159imbi2d 316 . . . . . . . . . 10  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )  <-> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) ) )
161 fveq2 5712 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  t  ->  (
( X `  i
) `  r )  =  ( ( X `
 i ) `  t ) )
162161oveq2d 6128 . . . . . . . . . . . . . . . . 17  |-  ( r  =  t  ->  ( E  x.  ( ( X `  i ) `  r ) )  =  ( E  x.  (
( X `  i
) `  t )
) )
163162sumeq2sdv 13202 . . . . . . . . . . . . . . . 16  |-  ( r  =  t  ->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
164163cbvmptv 4404 . . . . . . . . . . . . . . 15  |-  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )
165164eleq1i 2506 . . . . . . . . . . . . . 14  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A )
166 fveq1 5711 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
f `  t )  =  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) ) ) `  t ) )
167164fveq1i 5713 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) ) `  t )  =  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )
168166, 167syl6eq 2491 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
f `  t )  =  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t ) )
169168oveq1d 6127 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )
170169mpteq2dv 4400 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) ) )
171170eleq1d 2509 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A ) )
172171imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A ) ) )
173 stoweidlem17.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1741733com12 1191 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  A  /\  ph 
/\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1751743expib 1190 . . . . . . . . . . . . . . 15  |-  ( f  e.  A  ->  (
( ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A ) )
176172, 175vtoclga 3057 . . . . . . . . . . . . . 14  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  e.  A
) )
177165, 176sylbir 213 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  e.  A
) )
1781773impib 1185 . . . . . . . . . . . 12  |-  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  /\  ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )
1791783com13 1192 . . . . . . . . . . 11  |-  ( ( g  e.  A  /\  ph 
/\  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )
1801793expib 1190 . . . . . . . . . 10  |-  ( g  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A ) )
181160, 180vtoclga 3057 . . . . . . . . 9  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) )  e.  A  -> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
182153, 181sylbir 213 . . . . . . . 8  |-  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A  -> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
1831823impib 1185 . . . . . . 7  |-  ( ( ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A  /\  ph  /\  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
)
184125, 126, 149, 183syl3anc 1218 . . . . . 6  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t ) ) )  e.  A )
185 3anass 969 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  <->  ( m  e. 
NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) ) )
186185biimpri 206 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )
187186adantl 466 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) ) )
188 nfv 1673 . . . . . . . . . 10  |-  F/ t  m  e.  NN0
189 nfv 1673 . . . . . . . . . 10  |-  F/ t ( m  +  1 )  e.  ( 0 ... N )
190188, 41, 189nf3an 1863 . . . . . . . . 9  |-  F/ t ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )
191 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  t  e.  T )
192 fzfid 11816 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
0 ... m )  e. 
Fin )
193423ad2ant2 1010 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  E  e.  RR )
194193adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  E  e.  RR )
195194adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  E  e.  RR )
196 fzelp1 11528 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 0 ... m )  ->  i  e.  ( 0 ... (
m  +  1 ) ) )
197196anim2i 569 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  ( 0 ... (
m  +  1 ) ) ) )
198 an32 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  <-> 
( ( ( m  e.  NN0  /\  ph  /\  ( m  +  1
)  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... ( m  +  1 ) ) )  /\  t  e.  T ) )
199197, 198sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  /\  t  e.  T ) )
200453ad2ant2 1010 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  X :
( 0 ... N
) --> A )
201200adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  X : ( 0 ... N ) --> A )
202 elfzuz3 11471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  ( m  +  1 ) ) )
203 fzss2 11519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( 0 ... ( m  + 
1 ) )  C_  ( 0 ... N
) )
204202, 203syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
0 ... ( m  + 
1 ) )  C_  ( 0 ... N
) )
205204sselda 3377 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  +  1 )  e.  ( 0 ... N )  /\  i  e.  ( 0 ... ( m  + 
1 ) ) )  ->  i  e.  ( 0 ... N ) )
2062053ad2antl3 1152 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  i  e.  ( 0 ... N
) )
207201, 206ffvelrnd 5865 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ( X `  i )  e.  A )
208 simpl2 992 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ph )
209 feq1 5563 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( X `  i )  ->  (
f : T --> RR  <->  ( X `  i ) : T --> RR ) )
210209imbi2d 316 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X `  i )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  i
) : T --> RR ) ) )
211210, 63vtoclga 3057 . . . . . . . . . . . . . . . . 17  |-  ( ( X `  i )  e.  A  ->  ( ph  ->  ( X `  i ) : T --> RR ) )
212207, 208, 211sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ( X `  i ) : T --> RR )
213212fnvinran 29762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... ( m  + 
1 ) ) )  /\  t  e.  T
)  ->  ( ( X `  i ) `  t )  e.  RR )
214199, 213syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( X `
 i ) `  t )  e.  RR )
215195, 214remulcld 9435 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
216192, 215fsumrecl 13232 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
217 eqid 2443 . . . . . . . . . . . . 13  |-  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )
218217fvmpt2 5802 . . . . . . . . . . . 12  |-  ( ( t  e.  T  /\  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) )  e.  RR )  -> 
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  =  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )
219191, 216, 218syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  =  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )
220219oveq1d 6127 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  =  ( sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) )  +  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) )
221 3simpc 987 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) )
222221adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( ph  /\  ( m  + 
1 )  e.  ( 0 ... N ) ) )
223 feq1 5563 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X `  ( m  +  1
) )  ->  (
f : T --> RR  <->  ( X `  ( m  +  1 ) ) : T --> RR ) )
224223imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( X `  ( m  +  1
) )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  (
m  +  1 ) ) : T --> RR ) ) )
225224, 63vtoclga 3057 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( m  +  1 ) )  e.  A  ->  ( ph  ->  ( X `  ( m  +  1
) ) : T --> RR ) )
22691, 92, 225sylc 60 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ( X `  ( m  +  1 ) ) : T --> RR )
227222, 226syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( X `  ( m  +  1 ) ) : T --> RR )
228227, 191ffvelrnd 5865 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( X `  (
m  +  1 ) ) `  t )  e.  RR )
229194, 228remulcld 9435 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) )  e.  RR )
230 eqid 2443 . . . . . . . . . . . . 13  |-  ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
231230fvmpt2 5802 . . . . . . . . . . . 12  |-  ( ( t  e.  T  /\  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) )  e.  RR )  ->  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t )  =  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )
232191, 229, 231syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) `  t
)  =  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )
233232oveq2d 6128 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
234 elfzuz 11470 . . . . . . . . . . . . . 14  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
m  +  1 )  e.  ( ZZ>= `  0
) )
2352343ad2ant3 1011 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( m  +  1 )  e.  ( ZZ>= `  0 )
)
236235adantr 465 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
m  +  1 )  e.  ( ZZ>= `  0
) )
237194adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  E  e.  RR )
238213an32s 802 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  ( ( X `
 i ) `  t )  e.  RR )
239 remulcl 9388 . . . . . . . . . . . . . 14  |-  ( ( E  e.  RR  /\  ( ( X `  i ) `  t
)  e.  RR )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
240239recnd 9433 . . . . . . . . . . . . 13  |-  ( ( E  e.  RR  /\  ( ( X `  i ) `  t
)  e.  RR )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  CC )
241237, 238, 240syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  CC )
242 fveq2 5712 . . . . . . . . . . . . . 14  |-  ( i  =  ( m  + 
1 )  ->  ( X `  i )  =  ( X `  ( m  +  1
) ) )
243242fveq1d 5714 . . . . . . . . . . . . 13  |-  ( i  =  ( m  + 
1 )  ->  (
( X `  i
) `  t )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
244243oveq2d 6128 . . . . . . . . . . . 12  |-  ( i  =  ( m  + 
1 )  ->  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )
245236, 241, 244fsumm1 13241 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  (
sum_ i  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
246 nn0cn 10610 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  m  e.  CC )
2472463ad2ant1 1009 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  m  e.  CC )
248247adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  m  e.  CC )
249 1cnd 9423 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  1  e.  CC )
250248, 249pncand 9741 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( m  +  1 )  -  1 )  =  m )
251250oveq2d 6128 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
0 ... ( ( m  +  1 )  - 
1 ) )  =  ( 0 ... m
) )
252251sumeq1d 13199 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
253252oveq1d 6127 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( sum_ i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) )  +  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  =  ( sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
254245, 253eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  (
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
255220, 233, 2543eqtr4rd 2486 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )
256190, 255mpteq2da 4398 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) `  t
) ) ) )
257256eleq1d 2509 . . . . . . 7  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( (
t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
258187, 257syl 16 . . . . . 6  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t ) ) )  e.  A ) )
259184, 258mpbird 232 . . . . 5  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
260259exp32 605 . . . 4  |-  ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )  ->  ( m  e.  NN0  ->  ( ( ph  /\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A ) ) )
261260pm2.86i 101 . . 3  |-  ( m  e.  NN0  ->  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )  ->  ( ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
26214, 21, 28, 35, 80, 261nn0ind 10759 . 2  |-  ( N  e.  NN0  ->  ( (
ph  /\  N  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2632, 7, 262sylc 60 1  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   F/wnf 1589    e. wcel 1756    C_ wss 3349   {csn 3898   class class class wbr 4313    e. cmpt 4371   -->wf 5435   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440    - cmin 9616   NNcn 10343   NN0cn0 10600   ZZcz 10667   ZZ>=cuz 10882   ...cfz 11458   sum_csu 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185
This theorem is referenced by:  stoweidlem60  29881
  Copyright terms: Public domain W3C validator