Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem14 Structured version   Unicode version

Theorem stoweidlem14 29809
Description: There exists a  k as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90:  k is an integer and 1 < k * δ < 2.  D is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem14.1  |-  A  =  { j  e.  NN  |  ( 1  /  D )  <  j }
stoweidlem14.2  |-  ( ph  ->  D  e.  RR+ )
stoweidlem14.3  |-  ( ph  ->  D  <  1 )
Assertion
Ref Expression
stoweidlem14  |-  ( ph  ->  E. k  e.  NN  ( 1  <  (
k  x.  D )  /\  ( ( k  x.  D )  / 
2 )  <  1
) )
Distinct variable groups:    j, k, D    A, k    ph, k
Allowed substitution hints:    ph( j)    A( j)

Proof of Theorem stoweidlem14
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 stoweidlem14.1 . . . . . 6  |-  A  =  { j  e.  NN  |  ( 1  /  D )  <  j }
2 ssrab2 3437 . . . . . . 7  |-  { j  e.  NN  |  ( 1  /  D )  <  j }  C_  NN
32a1i 11 . . . . . 6  |-  ( ph  ->  { j  e.  NN  |  ( 1  /  D )  <  j }  C_  NN )
41, 3syl5eqss 3400 . . . . 5  |-  ( ph  ->  A  C_  NN )
5 stoweidlem14.2 . . . . . . 7  |-  ( ph  ->  D  e.  RR+ )
65rprecred 11038 . . . . . 6  |-  ( ph  ->  ( 1  /  D
)  e.  RR )
7 arch 10576 . . . . . 6  |-  ( ( 1  /  D )  e.  RR  ->  E. k  e.  NN  ( 1  /  D )  <  k
)
8 breq2 4296 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( 1  /  D
)  <  j  <->  ( 1  /  D )  < 
k ) )
98elrab 3117 . . . . . . . . . 10  |-  ( k  e.  { j  e.  NN  |  ( 1  /  D )  < 
j }  <->  ( k  e.  NN  /\  ( 1  /  D )  < 
k ) )
109biimpri 206 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( 1  /  D
)  <  k )  ->  k  e.  { j  e.  NN  |  ( 1  /  D )  <  j } )
1110, 1syl6eleqr 2534 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( 1  /  D
)  <  k )  ->  k  e.  A )
12 simpr 461 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( 1  /  D
)  <  k )  ->  ( 1  /  D
)  <  k )
1311, 12jca 532 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( 1  /  D
)  <  k )  ->  ( k  e.  A  /\  ( 1  /  D
)  <  k )
)
1413reximi2 2822 . . . . . 6  |-  ( E. k  e.  NN  (
1  /  D )  <  k  ->  E. k  e.  A  ( 1  /  D )  < 
k )
15 rexn0 3782 . . . . . 6  |-  ( E. k  e.  A  ( 1  /  D )  <  k  ->  A  =/=  (/) )
166, 7, 14, 154syl 21 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
17 nnwo 10920 . . . . 5  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. k  e.  A  A. z  e.  A  k  <_  z )
184, 16, 17syl2anc 661 . . . 4  |-  ( ph  ->  E. k  e.  A  A. z  e.  A  k  <_  z )
19 df-rex 2721 . . . 4  |-  ( E. k  e.  A  A. z  e.  A  k  <_  z  <->  E. k ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )
2018, 19sylib 196 . . 3  |-  ( ph  ->  E. k ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )
218, 1elrab2 3119 . . . . . . . 8  |-  ( k  e.  A  <->  ( k  e.  NN  /\  ( 1  /  D )  < 
k ) )
2221simplbi 460 . . . . . . 7  |-  ( k  e.  A  ->  k  e.  NN )
2322ad2antrl 727 . . . . . 6  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  k  e.  NN )
24 simpl 457 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  ph )
25 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  k  e.  A )
26 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  A. z  e.  A  k  <_  z )
27 nfcv 2579 . . . . . . . . 9  |-  F/_ z A
28 nfrab1 2901 . . . . . . . . . 10  |-  F/_ j { j  e.  NN  |  ( 1  /  D )  <  j }
291, 28nfcxfr 2576 . . . . . . . . 9  |-  F/_ j A
30 nfv 1673 . . . . . . . . 9  |-  F/ j  k  <_  z
31 nfv 1673 . . . . . . . . 9  |-  F/ z  k  <_  j
32 breq2 4296 . . . . . . . . 9  |-  ( z  =  j  ->  (
k  <_  z  <->  k  <_  j ) )
3327, 29, 30, 31, 32cbvralf 2941 . . . . . . . 8  |-  ( A. z  e.  A  k  <_  z  <->  A. j  e.  A  k  <_  j )
3426, 33sylib 196 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  A. j  e.  A  k  <_  j )
3521simprbi 464 . . . . . . . . 9  |-  ( k  e.  A  ->  (
1  /  D )  <  k )
3635ad2antrl 727 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  A  /\  A. j  e.  A  k  <_  j ) )  ->  (
1  /  D )  <  k )
3722ad2antrl 727 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  A  /\  A. j  e.  A  k  <_  j ) )  ->  k  e.  NN )
38 1red 9401 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  1  e.  RR )
39 nnre 10329 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR )
4039adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  RR )
415rpregt0d 11033 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  RR  /\  0  <  D ) )
4241adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( D  e.  RR  /\  0  <  D ) )
43 ltdivmul2 10207 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  k  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) )  -> 
( ( 1  /  D )  <  k  <->  1  <  ( k  x.  D ) ) )
4438, 40, 42, 43syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  D )  <  k  <->  1  <  ( k  x.  D ) ) )
4537, 44syldan 470 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  A  /\  A. j  e.  A  k  <_  j ) )  ->  (
( 1  /  D
)  <  k  <->  1  <  ( k  x.  D ) ) )
4636, 45mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  A  /\  A. j  e.  A  k  <_  j ) )  ->  1  <  ( k  x.  D
) )
4724, 25, 34, 46syl12anc 1216 . . . . . 6  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  1  <  ( k  x.  D
) )
48 oveq1 6098 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
k  x.  D )  =  ( 1  x.  D ) )
4948adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  (
k  x.  D )  =  ( 1  x.  D ) )
505rpcnd 11029 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  CC )
5150adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  = 
1 )  ->  D  e.  CC )
5251mulid2d 9404 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  (
1  x.  D )  =  D )
5349, 52eqtrd 2475 . . . . . . . . . 10  |-  ( (
ph  /\  k  = 
1 )  ->  (
k  x.  D )  =  D )
5453oveq1d 6106 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  (
( k  x.  D
)  /  2 )  =  ( D  / 
2 ) )
555rpred 11027 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  RR )
5655rehalfcld 10571 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  2
)  e.  RR )
57 halfre 10540 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
5857a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
59 1red 9401 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  RR )
60 stoweidlem14.3 . . . . . . . . . . . 12  |-  ( ph  ->  D  <  1 )
61 2re 10391 . . . . . . . . . . . . . 14  |-  2  e.  RR
6261a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  RR )
63 2pos 10413 . . . . . . . . . . . . . 14  |-  0  <  2
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  2 )
65 ltdiv1 10193 . . . . . . . . . . . . 13  |-  ( ( D  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( D  <  1  <->  ( D  / 
2 )  <  (
1  /  2 ) ) )
6655, 59, 62, 64, 65syl112anc 1222 . . . . . . . . . . . 12  |-  ( ph  ->  ( D  <  1  <->  ( D  /  2 )  <  ( 1  / 
2 ) ) )
6760, 66mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  2
)  <  ( 1  /  2 ) )
68 halflt1 10543 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  1
6968a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7056, 58, 59, 67, 69lttrd 9532 . . . . . . . . . 10  |-  ( ph  ->  ( D  /  2
)  <  1 )
7170adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  ( D  /  2 )  <  1 )
7254, 71eqbrtrd 4312 . . . . . . . 8  |-  ( (
ph  /\  k  = 
1 )  ->  (
( k  x.  D
)  /  2 )  <  1 )
7372adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  k  =  1 )  ->  ( (
k  x.  D )  /  2 )  <  1 )
74 simpll 753 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  ph )
75 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  k  e.  A )
7675, 22syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  k  e.  NN )
77 df-ne 2608 . . . . . . . . . . 11  |-  ( k  =/=  1  <->  -.  k  =  1 )
7877biimpri 206 . . . . . . . . . 10  |-  ( -.  k  =  1  -> 
k  =/=  1 )
7978adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  k  =/=  1 )
80 eluz2b3 10928 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( k  e.  NN  /\  k  =/=  1 ) )
8176, 79, 80sylanbrc 664 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  k  e.  ( ZZ>= `  2 )
)
82 1zzd 10677 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  1  e.  ZZ )
83 df-2 10380 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
8483fveq2i 5694 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
8584eleq2i 2507 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  <->  k  e.  (
ZZ>= `  ( 1  +  1 ) ) )
86 eluzsub 10890 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ  /\  k  e.  ( ZZ>= `  ( 1  +  1 ) ) )  ->  ( k  -  1 )  e.  ( ZZ>= `  1 )
)
8785, 86syl3an3b 1256 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( k  -  1 )  e.  ( ZZ>= `  1 )
)
88 nnuz 10896 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
8987, 88syl6eleqr 2534 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( k  -  1 )  e.  NN )
9082, 82, 81, 89syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
k  -  1 )  e.  NN )
9122, 39syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  A  ->  k  e.  RR )
9291adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  -  1 )  e.  A  /\  k  e.  A )  ->  k  e.  RR )
93 peano2rem 9675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  RR  ->  (
k  -  1 )  e.  RR )
9492, 93syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  -  1 )  e.  A  /\  k  e.  A )  ->  ( k  -  1 )  e.  RR )
95 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  -  1 )  e.  RR  /\  k  e.  RR )  ->  k  e.  RR )
9695ltm1d 10265 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  -  1 )  e.  RR  /\  k  e.  RR )  ->  ( k  -  1 )  <  k )
97 ltnle 9454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  -  1 )  e.  RR  /\  k  e.  RR )  ->  ( ( k  - 
1 )  <  k  <->  -.  k  <_  ( k  -  1 ) ) )
9896, 97mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  -  1 )  e.  RR  /\  k  e.  RR )  ->  -.  k  <_  (
k  -  1 ) )
9994, 92, 98syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( k  -  1 )  e.  A  /\  k  e.  A )  ->  -.  k  <_  (
k  -  1 ) )
100 breq2 4296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( k  - 
1 )  ->  (
k  <_  z  <->  k  <_  ( k  -  1 ) ) )
101100notbid 294 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( k  - 
1 )  ->  ( -.  k  <_  z  <->  -.  k  <_  ( k  -  1 ) ) )
102101rspcev 3073 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( k  -  1 )  e.  A  /\  -.  k  <_  ( k  -  1 ) )  ->  E. z  e.  A  -.  k  <_  z )
10399, 102syldan 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  -  1 )  e.  A  /\  k  e.  A )  ->  E. z  e.  A  -.  k  <_  z )
104 rexnal 2726 . . . . . . . . . . . . . . . . . 18  |-  ( E. z  e.  A  -.  k  <_  z  <->  -.  A. z  e.  A  k  <_  z )
105103, 104sylib 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  -  1 )  e.  A  /\  k  e.  A )  ->  -.  A. z  e.  A  k  <_  z
)
106105ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( k  -  1 )  e.  A  ->  (
k  e.  A  ->  -.  A. z  e.  A  k  <_  z ) )
107 imnan 422 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  A  ->  -.  A. z  e.  A  k  <_  z )  <->  -.  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )
108106, 107sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( k  -  1 )  e.  A  ->  -.  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )
109108con2i 120 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  A. z  e.  A  k  <_  z )  ->  -.  ( k  -  1 )  e.  A )
110109ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  -.  ( k  -  1 )  e.  A )
111 breq2 4296 . . . . . . . . . . . . . 14  |-  ( j  =  ( k  - 
1 )  ->  (
( 1  /  D
)  <  j  <->  ( 1  /  D )  < 
( k  -  1 ) ) )
112111, 1elrab2 3119 . . . . . . . . . . . . 13  |-  ( ( k  -  1 )  e.  A  <->  ( (
k  -  1 )  e.  NN  /\  (
1  /  D )  <  ( k  - 
1 ) ) )
113110, 112sylnib 304 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  -.  ( ( k  - 
1 )  e.  NN  /\  ( 1  /  D
)  <  ( k  -  1 ) ) )
114 ianor 488 . . . . . . . . . . . 12  |-  ( -.  ( ( k  - 
1 )  e.  NN  /\  ( 1  /  D
)  <  ( k  -  1 ) )  <-> 
( -.  ( k  -  1 )  e.  NN  \/  -.  (
1  /  D )  <  ( k  - 
1 ) ) )
115113, 114sylib 196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  ( -.  ( k  -  1 )  e.  NN  \/  -.  ( 1  /  D
)  <  ( k  -  1 ) ) )
116 imor 412 . . . . . . . . . . 11  |-  ( ( ( k  -  1 )  e.  NN  ->  -.  ( 1  /  D
)  <  ( k  -  1 ) )  <-> 
( -.  ( k  -  1 )  e.  NN  \/  -.  (
1  /  D )  <  ( k  - 
1 ) ) )
117115, 116sylibr 212 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
( k  -  1 )  e.  NN  ->  -.  ( 1  /  D
)  <  ( k  -  1 ) ) )
11890, 117mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  -.  ( 1  /  D
)  <  ( k  -  1 ) )
11975, 22, 39, 934syl 21 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
k  -  1 )  e.  RR )
12055ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  D  e.  RR )
1215rpne0d 11032 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  0 )
122121ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  D  =/=  0 )
123120, 122rereccld 10158 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
1  /  D )  e.  RR )
124119, 123lenltd 9520 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
( k  -  1 )  <_  ( 1  /  D )  <->  -.  (
1  /  D )  <  ( k  - 
1 ) ) )
125118, 124mpbird 232 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
k  -  1 )  <_  ( 1  /  D ) )
126 eluzelre 10871 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  RR )
127126adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  k  e.  RR )
12855adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  D  e.  RR )
129127, 128remulcld 9414 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( k  x.  D )  e.  RR )
130129rehalfcld 10571 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
k  x.  D )  /  2 )  e.  RR )
1311303adant3 1008 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  / 
2 )  e.  RR )
13259, 55readdcld 9413 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  D
)  e.  RR )
133132adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 1  +  D )  e.  RR )
134133rehalfcld 10571 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
1  +  D )  /  2 )  e.  RR )
1351343adant3 1008 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( 1  +  D )  / 
2 )  e.  RR )
136 1red 9401 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  1  e.  RR )
137 eluzelcn 10872 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  CC )
138137adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  k  e.  CC )
13950adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  D  e.  CC )
140138, 139mulcld 9406 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( k  x.  D )  e.  CC )
1411403adant3 1008 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( k  x.  D )  e.  CC )
142503ad2ant1 1009 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  D  e.  CC )
143141, 142npcand 9723 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( ( k  x.  D )  -  D )  +  D )  =  ( k  x.  D ) )
144129, 128resubcld 9776 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
k  x.  D )  -  D )  e.  RR )
1451443adant3 1008 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  -  D )  e.  RR )
146553ad2ant1 1009 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  D  e.  RR )
147 simp3 990 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( k  - 
1 )  <_  (
1  /  D ) )
148 1red 9401 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
149126, 148resubcld 9776 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( k  -  1 )  e.  RR )
1501493ad2ant2 1010 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( k  - 
1 )  e.  RR )
15163ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( 1  /  D )  e.  RR )
152413ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( D  e.  RR  /\  0  < 
D ) )
153 lemul1 10181 . . . . . . . . . . . . . . 15  |-  ( ( ( k  -  1 )  e.  RR  /\  ( 1  /  D
)  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) )  ->  ( (
k  -  1 )  <_  ( 1  /  D )  <->  ( (
k  -  1 )  x.  D )  <_ 
( ( 1  /  D )  x.  D
) ) )
154150, 151, 152, 153syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  -  1 )  <_ 
( 1  /  D
)  <->  ( ( k  -  1 )  x.  D )  <_  (
( 1  /  D
)  x.  D ) ) )
155147, 154mpbid 210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  -  1 )  x.  D )  <_  (
( 1  /  D
)  x.  D ) )
156 1cnd 9402 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  1  e.  CC )
157138, 156, 139subdird 9801 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
k  -  1 )  x.  D )  =  ( ( k  x.  D )  -  (
1  x.  D ) ) )
158139mulid2d 9404 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 1  x.  D )  =  D )
159158oveq2d 6107 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
k  x.  D )  -  ( 1  x.  D ) )  =  ( ( k  x.  D )  -  D
) )
160157, 159eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
k  -  1 )  x.  D )  =  ( ( k  x.  D )  -  D
) )
1611603adant3 1008 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  -  1 )  x.  D )  =  ( ( k  x.  D
)  -  D ) )
162 1cnd 9402 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  CC )
163162, 50, 1213jca 1168 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )
1641633ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( 1  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )
165 divcan1 10003 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  (
( 1  /  D
)  x.  D )  =  1 )
166164, 165syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( 1  /  D )  x.  D )  =  1 )
167155, 161, 1663brtr3d 4321 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  -  D )  <_  1
)
168145, 136, 146, 167leadd1dd 9953 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( ( k  x.  D )  -  D )  +  D )  <_  (
1  +  D ) )
169143, 168eqbrtrrd 4314 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( k  x.  D )  <_  (
1  +  D ) )
1701293adant3 1008 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( k  x.  D )  e.  RR )
1711323ad2ant1 1009 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( 1  +  D )  e.  RR )
17261, 63pm3.2i 455 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
173172a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
174 lediv1 10194 . . . . . . . . . . 11  |-  ( ( ( k  x.  D
)  e.  RR  /\  ( 1  +  D
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
k  x.  D )  <_  ( 1  +  D )  <->  ( (
k  x.  D )  /  2 )  <_ 
( ( 1  +  D )  /  2
) ) )
175170, 171, 173, 174syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  <_ 
( 1  +  D
)  <->  ( ( k  x.  D )  / 
2 )  <_  (
( 1  +  D
)  /  2 ) ) )
176169, 175mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  / 
2 )  <_  (
( 1  +  D
)  /  2 ) )
17755, 59, 59, 60ltadd2dd 9530 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  +  D
)  <  ( 1  +  1 ) )
178 1p1e2 10435 . . . . . . . . . . . . 13  |-  ( 1  +  1 )  =  2
179177, 178syl6breq 4331 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  D
)  <  2 )
180 ltdiv1 10193 . . . . . . . . . . . . 13  |-  ( ( ( 1  +  D
)  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  +  D )  <  2  <->  ( ( 1  +  D )  / 
2 )  <  (
2  /  2 ) ) )
181132, 62, 62, 64, 180syl112anc 1222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  +  D )  <  2  <->  ( ( 1  +  D
)  /  2 )  <  ( 2  / 
2 ) ) )
182179, 181mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  +  D )  /  2
)  <  ( 2  /  2 ) )
183 2div2e1 10444 . . . . . . . . . . 11  |-  ( 2  /  2 )  =  1
184182, 183syl6breq 4331 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  +  D )  /  2
)  <  1 )
1851843ad2ant1 1009 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( 1  +  D )  / 
2 )  <  1
)
186131, 135, 136, 176, 185lelttrd 9529 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )  /\  ( k  -  1 )  <_  ( 1  /  D ) )  ->  ( ( k  x.  D )  / 
2 )  <  1
)
18774, 81, 125, 186syl3anc 1218 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  A  /\  A. z  e.  A  k  <_  z ) )  /\  -.  k  =  1 )  ->  (
( k  x.  D
)  /  2 )  <  1 )
18873, 187pm2.61dan 789 . . . . . 6  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  (
( k  x.  D
)  /  2 )  <  1 )
18923, 47, 188jca32 535 . . . . 5  |-  ( (
ph  /\  ( k  e.  A  /\  A. z  e.  A  k  <_  z ) )  ->  (
k  e.  NN  /\  ( 1  <  (
k  x.  D )  /\  ( ( k  x.  D )  / 
2 )  <  1
) ) )
190189ex 434 . . . 4  |-  ( ph  ->  ( ( k  e.  A  /\  A. z  e.  A  k  <_  z )  ->  ( k  e.  NN  /\  ( 1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) ) ) )
191190eximdv 1676 . . 3  |-  ( ph  ->  ( E. k ( k  e.  A  /\  A. z  e.  A  k  <_  z )  ->  E. k ( k  e.  NN  /\  ( 1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) ) ) )
19220, 191mpd 15 . 2  |-  ( ph  ->  E. k ( k  e.  NN  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) ) )
193 df-rex 2721 . 2  |-  ( E. k  e.  NN  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 )  <->  E. k
( k  e.  NN  /\  ( 1  <  (
k  x.  D )  /\  ( ( k  x.  D )  / 
2 )  <  1
) ) )
194192, 193sylibr 212 1  |-  ( ph  ->  E. k  e.  NN  ( 1  <  (
k  x.  D )  /\  ( ( k  x.  D )  / 
2 )  <  1
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   {crab 2719    C_ wss 3328   (/)c0 3637   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   2c2 10371   ZZcz 10646   ZZ>=cuz 10861   RR+crp 10991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992
This theorem is referenced by:  stoweidlem49  29844
  Copyright terms: Public domain W3C validator