Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Unicode version

Theorem stoweidlem13 29733
Description: Lemma for stoweid 29783. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1  |-  ( ph  ->  E  e.  RR+ )
stoweidlem13.2  |-  ( ph  ->  X  e.  RR )
stoweidlem13.3  |-  ( ph  ->  Y  e.  RR )
stoweidlem13.4  |-  ( ph  ->  j  e.  RR )
stoweidlem13.5  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  X )
stoweidlem13.6  |-  ( ph  ->  X  <_  ( (
j  -  ( 1  /  3 ) )  x.  E ) )
stoweidlem13.7  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  Y )
stoweidlem13.8  |-  ( ph  ->  Y  <  ( ( j  +  ( 1  /  3 ) )  x.  E ) )
Assertion
Ref Expression
stoweidlem13  |-  ( ph  ->  ( abs `  ( Y  -  X )
)  <  ( 2  x.  E ) )

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4  |-  ( ph  ->  Y  e.  RR )
2 stoweidlem13.2 . . . 4  |-  ( ph  ->  X  e.  RR )
31, 2resubcld 9772 . . 3  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
4 2re 10387 . . . 4  |-  2  e.  RR
5 stoweidlem13.1 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
65rpred 11023 . . . 4  |-  ( ph  ->  E  e.  RR )
7 remulcl 9363 . . . 4  |-  ( ( 2  e.  RR  /\  E  e.  RR )  ->  ( 2  x.  E
)  e.  RR )
84, 6, 7sylancr 658 . . 3  |-  ( ph  ->  ( 2  x.  E
)  e.  RR )
91recnd 9408 . . . . 5  |-  ( ph  ->  Y  e.  CC )
102recnd 9408 . . . . 5  |-  ( ph  ->  X  e.  CC )
119, 10negsubdi2d 9731 . . . 4  |-  ( ph  -> 
-u ( Y  -  X )  =  ( X  -  Y ) )
122, 1resubcld 9772 . . . . 5  |-  ( ph  ->  ( X  -  Y
)  e.  RR )
13 1red 9397 . . . . . 6  |-  ( ph  ->  1  e.  RR )
1413, 6remulcld 9410 . . . . 5  |-  ( ph  ->  ( 1  x.  E
)  e.  RR )
15 stoweidlem13.4 . . . . . . . . . . 11  |-  ( ph  ->  j  e.  RR )
16 3re 10391 . . . . . . . . . . . . 13  |-  3  e.  RR
17 3ne0 10412 . . . . . . . . . . . . 13  |-  3  =/=  0
1816, 17rereccli 10092 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  RR
1918a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
2015, 19resubcld 9772 . . . . . . . . . 10  |-  ( ph  ->  ( j  -  (
1  /  3 ) )  e.  RR )
2120, 6remulcld 9410 . . . . . . . . 9  |-  ( ph  ->  ( ( j  -  ( 1  /  3
) )  x.  E
)  e.  RR )
2221, 1resubcld 9772 . . . . . . . 8  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  x.  E )  -  Y
)  e.  RR )
23 4re 10394 . . . . . . . . . . . . 13  |-  4  e.  RR
2423, 16, 173pm3.2i 1161 . . . . . . . . . . . 12  |-  ( 4  e.  RR  /\  3  e.  RR  /\  3  =/=  0 )
25 redivcl 10046 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  3  e.  RR  /\  3  =/=  0 )  ->  (
4  /  3 )  e.  RR )
2624, 25mp1i 12 . . . . . . . . . . 11  |-  ( ph  ->  ( 4  /  3
)  e.  RR )
2715, 26resubcld 9772 . . . . . . . . . 10  |-  ( ph  ->  ( j  -  (
4  /  3 ) )  e.  RR )
2827, 6remulcld 9410 . . . . . . . . 9  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  e.  RR )
2921, 28resubcld 9772 . . . . . . . 8  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  x.  E )  -  (
( j  -  (
4  /  3 ) )  x.  E ) )  e.  RR )
30 stoweidlem13.6 . . . . . . . . 9  |-  ( ph  ->  X  <_  ( (
j  -  ( 1  /  3 ) )  x.  E ) )
312, 21, 1, 30lesub1dd 9951 . . . . . . . 8  |-  ( ph  ->  ( X  -  Y
)  <_  ( (
( j  -  (
1  /  3 ) )  x.  E )  -  Y ) )
32 stoweidlem13.7 . . . . . . . . 9  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  Y )
3328, 1, 21, 32ltsub2dd 9948 . . . . . . . 8  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  x.  E )  -  Y
)  <  ( (
( j  -  (
1  /  3 ) )  x.  E )  -  ( ( j  -  ( 4  / 
3 ) )  x.  E ) ) )
3412, 22, 29, 31, 33lelttrd 9525 . . . . . . 7  |-  ( ph  ->  ( X  -  Y
)  <  ( (
( j  -  (
1  /  3 ) )  x.  E )  -  ( ( j  -  ( 4  / 
3 ) )  x.  E ) ) )
3515recnd 9408 . . . . . . . . . 10  |-  ( ph  ->  j  e.  CC )
3619recnd 9408 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  3
)  e.  CC )
3735, 36subcld 9715 . . . . . . . . 9  |-  ( ph  ->  ( j  -  (
1  /  3 ) )  e.  CC )
3826recnd 9408 . . . . . . . . . 10  |-  ( ph  ->  ( 4  /  3
)  e.  CC )
3935, 38subcld 9715 . . . . . . . . 9  |-  ( ph  ->  ( j  -  (
4  /  3 ) )  e.  CC )
406recnd 9408 . . . . . . . . 9  |-  ( ph  ->  E  e.  CC )
4137, 39, 40subdird 9797 . . . . . . . 8  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  -  ( j  -  (
4  /  3 ) ) )  x.  E
)  =  ( ( ( j  -  (
1  /  3 ) )  x.  E )  -  ( ( j  -  ( 4  / 
3 ) )  x.  E ) ) )
4235, 36, 35, 38sub4d 9764 . . . . . . . . . 10  |-  ( ph  ->  ( ( j  -  ( 1  /  3
) )  -  (
j  -  ( 4  /  3 ) ) )  =  ( ( j  -  j )  -  ( ( 1  /  3 )  -  ( 4  /  3
) ) ) )
4335, 35subcld 9715 . . . . . . . . . . 11  |-  ( ph  ->  ( j  -  j
)  e.  CC )
4443, 36, 38subsub2d 9744 . . . . . . . . . 10  |-  ( ph  ->  ( ( j  -  j )  -  (
( 1  /  3
)  -  ( 4  /  3 ) ) )  =  ( ( j  -  j )  +  ( ( 4  /  3 )  -  ( 1  /  3
) ) ) )
4542, 44eqtrd 2473 . . . . . . . . 9  |-  ( ph  ->  ( ( j  -  ( 1  /  3
) )  -  (
j  -  ( 4  /  3 ) ) )  =  ( ( j  -  j )  +  ( ( 4  /  3 )  -  ( 1  /  3
) ) ) )
4645oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  -  ( j  -  (
4  /  3 ) ) )  x.  E
)  =  ( ( ( j  -  j
)  +  ( ( 4  /  3 )  -  ( 1  / 
3 ) ) )  x.  E ) )
4741, 46eqtr3d 2475 . . . . . . 7  |-  ( ph  ->  ( ( ( j  -  ( 1  / 
3 ) )  x.  E )  -  (
( j  -  (
4  /  3 ) )  x.  E ) )  =  ( ( ( j  -  j
)  +  ( ( 4  /  3 )  -  ( 1  / 
3 ) ) )  x.  E ) )
4834, 47breqtrd 4313 . . . . . 6  |-  ( ph  ->  ( X  -  Y
)  <  ( (
( j  -  j
)  +  ( ( 4  /  3 )  -  ( 1  / 
3 ) ) )  x.  E ) )
4935subidd 9703 . . . . . . . . 9  |-  ( ph  ->  ( j  -  j
)  =  0 )
5049oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( j  -  j )  +  ( ( 4  /  3
)  -  ( 1  /  3 ) ) )  =  ( 0  +  ( ( 4  /  3 )  -  ( 1  /  3
) ) ) )
51 4cn 10395 . . . . . . . . . . . 12  |-  4  e.  CC
52 3cn 10392 . . . . . . . . . . . 12  |-  3  e.  CC
5351, 52, 17divcli 10069 . . . . . . . . . . 11  |-  ( 4  /  3 )  e.  CC
54 ax-1cn 9336 . . . . . . . . . . . 12  |-  1  e.  CC
5554, 52, 17divcli 10069 . . . . . . . . . . 11  |-  ( 1  /  3 )  e.  CC
56 1div1e1 10020 . . . . . . . . . . . . . 14  |-  ( 1  /  1 )  =  1
5756oveq2i 6101 . . . . . . . . . . . . 13  |-  ( ( 1  /  3 )  +  ( 1  / 
1 ) )  =  ( ( 1  / 
3 )  +  1 )
58 ax-1ne0 9347 . . . . . . . . . . . . . 14  |-  1  =/=  0
5954, 52, 54, 54, 17, 58divadddivi 10089 . . . . . . . . . . . . 13  |-  ( ( 1  /  3 )  +  ( 1  / 
1 ) )  =  ( ( ( 1  x.  1 )  +  ( 1  x.  3 ) )  /  (
3  x.  1 ) )
6057, 59eqtr3i 2463 . . . . . . . . . . . 12  |-  ( ( 1  /  3 )  +  1 )  =  ( ( ( 1  x.  1 )  +  ( 1  x.  3 ) )  /  (
3  x.  1 ) )
6152, 54addcomi 9556 . . . . . . . . . . . . . 14  |-  ( 3  +  1 )  =  ( 1  +  3 )
62 df-4 10378 . . . . . . . . . . . . . 14  |-  4  =  ( 3  +  1 )
63 1t1e1 10465 . . . . . . . . . . . . . . 15  |-  ( 1  x.  1 )  =  1
6452mulid2i 9385 . . . . . . . . . . . . . . 15  |-  ( 1  x.  3 )  =  3
6563, 64oveq12i 6102 . . . . . . . . . . . . . 14  |-  ( ( 1  x.  1 )  +  ( 1  x.  3 ) )  =  ( 1  +  3 )
6661, 62, 653eqtr4ri 2472 . . . . . . . . . . . . 13  |-  ( ( 1  x.  1 )  +  ( 1  x.  3 ) )  =  4
6766oveq1i 6100 . . . . . . . . . . . 12  |-  ( ( ( 1  x.  1 )  +  ( 1  x.  3 ) )  /  ( 3  x.  1 ) )  =  ( 4  /  (
3  x.  1 ) )
68 3t1e3 10468 . . . . . . . . . . . . 13  |-  ( 3  x.  1 )  =  3
6968oveq2i 6101 . . . . . . . . . . . 12  |-  ( 4  /  ( 3  x.  1 ) )  =  ( 4  /  3
)
7060, 67, 693eqtri 2465 . . . . . . . . . . 11  |-  ( ( 1  /  3 )  +  1 )  =  ( 4  /  3
)
7153, 55, 54, 70subaddrii 9693 . . . . . . . . . 10  |-  ( ( 4  /  3 )  -  ( 1  / 
3 ) )  =  1
7271oveq2i 6101 . . . . . . . . 9  |-  ( 0  +  ( ( 4  /  3 )  -  ( 1  /  3
) ) )  =  ( 0  +  1 )
73 1e0p1 10779 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
7472, 73eqtr4i 2464 . . . . . . . 8  |-  ( 0  +  ( ( 4  /  3 )  -  ( 1  /  3
) ) )  =  1
7550, 74syl6eq 2489 . . . . . . 7  |-  ( ph  ->  ( ( j  -  j )  +  ( ( 4  /  3
)  -  ( 1  /  3 ) ) )  =  1 )
7675oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( ( j  -  j )  +  ( ( 4  / 
3 )  -  (
1  /  3 ) ) )  x.  E
)  =  ( 1  x.  E ) )
7748, 76breqtrd 4313 . . . . 5  |-  ( ph  ->  ( X  -  Y
)  <  ( 1  x.  E ) )
78 1lt2 10484 . . . . . 6  |-  1  <  2
794a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  RR )
8013, 79, 5ltmul1d 11060 . . . . . 6  |-  ( ph  ->  ( 1  <  2  <->  ( 1  x.  E )  <  ( 2  x.  E ) ) )
8178, 80mpbii 211 . . . . 5  |-  ( ph  ->  ( 1  x.  E
)  <  ( 2  x.  E ) )
8212, 14, 8, 77, 81lttrd 9528 . . . 4  |-  ( ph  ->  ( X  -  Y
)  <  ( 2  x.  E ) )
8311, 82eqbrtrd 4309 . . 3  |-  ( ph  -> 
-u ( Y  -  X )  <  (
2  x.  E ) )
843, 8, 83ltnegcon1d 9915 . 2  |-  ( ph  -> 
-u ( 2  x.  E )  <  ( Y  -  X )
)
85 5re 10396 . . . . . 6  |-  5  e.  RR
8685a1i 11 . . . . 5  |-  ( ph  ->  5  e.  RR )
8716a1i 11 . . . . 5  |-  ( ph  ->  3  e.  RR )
8817a1i 11 . . . . 5  |-  ( ph  ->  3  =/=  0 )
8986, 87, 88redivcld 10155 . . . 4  |-  ( ph  ->  ( 5  /  3
)  e.  RR )
9089, 6remulcld 9410 . . 3  |-  ( ph  ->  ( ( 5  / 
3 )  x.  E
)  e.  RR )
912renegcld 9771 . . . . 5  |-  ( ph  -> 
-u X  e.  RR )
9215, 19readdcld 9409 . . . . . 6  |-  ( ph  ->  ( j  +  ( 1  /  3 ) )  e.  RR )
9392, 6remulcld 9410 . . . . 5  |-  ( ph  ->  ( ( j  +  ( 1  /  3
) )  x.  E
)  e.  RR )
9428renegcld 9771 . . . . 5  |-  ( ph  -> 
-u ( ( j  -  ( 4  / 
3 ) )  x.  E )  e.  RR )
95 stoweidlem13.8 . . . . 5  |-  ( ph  ->  Y  <  ( ( j  +  ( 1  /  3 ) )  x.  E ) )
96 stoweidlem13.5 . . . . . 6  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  <  X )
9728, 2ltnegd 9913 . . . . . 6  |-  ( ph  ->  ( ( ( j  -  ( 4  / 
3 ) )  x.  E )  <  X  <->  -u X  <  -u (
( j  -  (
4  /  3 ) )  x.  E ) ) )
9896, 97mpbid 210 . . . . 5  |-  ( ph  -> 
-u X  <  -u (
( j  -  (
4  /  3 ) )  x.  E ) )
991, 91, 93, 94, 95, 98lt2addd 9957 . . . 4  |-  ( ph  ->  ( Y  +  -u X )  <  (
( ( j  +  ( 1  /  3
) )  x.  E
)  +  -u (
( j  -  (
4  /  3 ) )  x.  E ) ) )
1009, 10negsubd 9721 . . . 4  |-  ( ph  ->  ( Y  +  -u X )  =  ( Y  -  X ) )
10135, 36, 40adddird 9407 . . . . . 6  |-  ( ph  ->  ( ( j  +  ( 1  /  3
) )  x.  E
)  =  ( ( j  x.  E )  +  ( ( 1  /  3 )  x.  E ) ) )
10235, 38negsubd 9721 . . . . . . . . . . 11  |-  ( ph  ->  ( j  +  -u ( 4  /  3
) )  =  ( j  -  ( 4  /  3 ) ) )
103102eqcomd 2446 . . . . . . . . . 10  |-  ( ph  ->  ( j  -  (
4  /  3 ) )  =  ( j  +  -u ( 4  / 
3 ) ) )
104103oveq1d 6105 . . . . . . . . 9  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  =  ( ( j  +  -u (
4  /  3 ) )  x.  E ) )
10538negcld 9702 . . . . . . . . . 10  |-  ( ph  -> 
-u ( 4  / 
3 )  e.  CC )
10635, 105, 40adddird 9407 . . . . . . . . 9  |-  ( ph  ->  ( ( j  + 
-u ( 4  / 
3 ) )  x.  E )  =  ( ( j  x.  E
)  +  ( -u ( 4  /  3
)  x.  E ) ) )
10738, 40mulneg1d 9793 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( 4  /  3 )  x.  E )  =  -u ( ( 4  / 
3 )  x.  E
) )
108107oveq2d 6106 . . . . . . . . 9  |-  ( ph  ->  ( ( j  x.  E )  +  (
-u ( 4  / 
3 )  x.  E
) )  =  ( ( j  x.  E
)  +  -u (
( 4  /  3
)  x.  E ) ) )
109104, 106, 1083eqtrd 2477 . . . . . . . 8  |-  ( ph  ->  ( ( j  -  ( 4  /  3
) )  x.  E
)  =  ( ( j  x.  E )  +  -u ( ( 4  /  3 )  x.  E ) ) )
110109negeqd 9600 . . . . . . 7  |-  ( ph  -> 
-u ( ( j  -  ( 4  / 
3 ) )  x.  E )  =  -u ( ( j  x.  E )  +  -u ( ( 4  / 
3 )  x.  E
) ) )
11135, 40mulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( j  x.  E
)  e.  CC )
11238, 40mulcld 9402 . . . . . . . . 9  |-  ( ph  ->  ( ( 4  / 
3 )  x.  E
)  e.  CC )
113112negcld 9702 . . . . . . . 8  |-  ( ph  -> 
-u ( ( 4  /  3 )  x.  E )  e.  CC )
114111, 113negdid 9728 . . . . . . 7  |-  ( ph  -> 
-u ( ( j  x.  E )  + 
-u ( ( 4  /  3 )  x.  E ) )  =  ( -u ( j  x.  E )  + 
-u -u ( ( 4  /  3 )  x.  E ) ) )
115112negnegd 9706 . . . . . . . 8  |-  ( ph  -> 
-u -u ( ( 4  /  3 )  x.  E )  =  ( ( 4  /  3
)  x.  E ) )
116115oveq2d 6106 . . . . . . 7  |-  ( ph  ->  ( -u ( j  x.  E )  + 
-u -u ( ( 4  /  3 )  x.  E ) )  =  ( -u ( j  x.  E )  +  ( ( 4  / 
3 )  x.  E
) ) )
117110, 114, 1163eqtrd 2477 . . . . . 6  |-  ( ph  -> 
-u ( ( j  -  ( 4  / 
3 ) )  x.  E )  =  (
-u ( j  x.  E )  +  ( ( 4  /  3
)  x.  E ) ) )
118101, 117oveq12d 6108 . . . . 5  |-  ( ph  ->  ( ( ( j  +  ( 1  / 
3 ) )  x.  E )  +  -u ( ( j  -  ( 4  /  3
) )  x.  E
) )  =  ( ( ( j  x.  E )  +  ( ( 1  /  3
)  x.  E ) )  +  ( -u ( j  x.  E
)  +  ( ( 4  /  3 )  x.  E ) ) ) )
11936, 40mulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
3 )  x.  E
)  e.  CC )
120111negcld 9702 . . . . . . . 8  |-  ( ph  -> 
-u ( j  x.  E )  e.  CC )
121111, 119, 120, 112add4d 9589 . . . . . . 7  |-  ( ph  ->  ( ( ( j  x.  E )  +  ( ( 1  / 
3 )  x.  E
) )  +  (
-u ( j  x.  E )  +  ( ( 4  /  3
)  x.  E ) ) )  =  ( ( ( j  x.  E )  +  -u ( j  x.  E
) )  +  ( ( ( 1  / 
3 )  x.  E
)  +  ( ( 4  /  3 )  x.  E ) ) ) )
122111negidd 9705 . . . . . . . 8  |-  ( ph  ->  ( ( j  x.  E )  +  -u ( j  x.  E
) )  =  0 )
123122oveq1d 6105 . . . . . . 7  |-  ( ph  ->  ( ( ( j  x.  E )  + 
-u ( j  x.  E ) )  +  ( ( ( 1  /  3 )  x.  E )  +  ( ( 4  /  3
)  x.  E ) ) )  =  ( 0  +  ( ( ( 1  /  3
)  x.  E )  +  ( ( 4  /  3 )  x.  E ) ) ) )
124119, 112addcld 9401 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  3 )  x.  E )  +  ( ( 4  /  3
)  x.  E ) )  e.  CC )
125124addid2d 9566 . . . . . . 7  |-  ( ph  ->  ( 0  +  ( ( ( 1  / 
3 )  x.  E
)  +  ( ( 4  /  3 )  x.  E ) ) )  =  ( ( ( 1  /  3
)  x.  E )  +  ( ( 4  /  3 )  x.  E ) ) )
126121, 123, 1253eqtrd 2477 . . . . . 6  |-  ( ph  ->  ( ( ( j  x.  E )  +  ( ( 1  / 
3 )  x.  E
) )  +  (
-u ( j  x.  E )  +  ( ( 4  /  3
)  x.  E ) ) )  =  ( ( ( 1  / 
3 )  x.  E
)  +  ( ( 4  /  3 )  x.  E ) ) )
12736, 38, 40adddird 9407 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  3 )  +  ( 4  /  3
) )  x.  E
)  =  ( ( ( 1  /  3
)  x.  E )  +  ( ( 4  /  3 )  x.  E ) ) )
12887recnd 9408 . . . . . . . 8  |-  ( ph  ->  3  e.  CC )
12936, 38addcld 9401 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
3 )  +  ( 4  /  3 ) )  e.  CC )
130128, 36, 38adddid 9406 . . . . . . . . 9  |-  ( ph  ->  ( 3  x.  (
( 1  /  3
)  +  ( 4  /  3 ) ) )  =  ( ( 3  x.  ( 1  /  3 ) )  +  ( 3  x.  ( 4  /  3
) ) ) )
13154, 51addcomi 9556 . . . . . . . . . 10  |-  ( 1  +  4 )  =  ( 4  +  1 )
13254, 52, 17divcan2i 10070 . . . . . . . . . . 11  |-  ( 3  x.  ( 1  / 
3 ) )  =  1
13351, 52, 17divcan2i 10070 . . . . . . . . . . 11  |-  ( 3  x.  ( 4  / 
3 ) )  =  4
134132, 133oveq12i 6102 . . . . . . . . . 10  |-  ( ( 3  x.  ( 1  /  3 ) )  +  ( 3  x.  ( 4  /  3
) ) )  =  ( 1  +  4 )
135 df-5 10379 . . . . . . . . . 10  |-  5  =  ( 4  +  1 )
136131, 134, 1353eqtr4i 2471 . . . . . . . . 9  |-  ( ( 3  x.  ( 1  /  3 ) )  +  ( 3  x.  ( 4  /  3
) ) )  =  5
137130, 136syl6eq 2489 . . . . . . . 8  |-  ( ph  ->  ( 3  x.  (
( 1  /  3
)  +  ( 4  /  3 ) ) )  =  5 )
138128, 129, 88, 137mvllmuld 10159 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
3 )  +  ( 4  /  3 ) )  =  ( 5  /  3 ) )
139138oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  3 )  +  ( 4  /  3
) )  x.  E
)  =  ( ( 5  /  3 )  x.  E ) )
140126, 127, 1393eqtr2d 2479 . . . . 5  |-  ( ph  ->  ( ( ( j  x.  E )  +  ( ( 1  / 
3 )  x.  E
) )  +  (
-u ( j  x.  E )  +  ( ( 4  /  3
)  x.  E ) ) )  =  ( ( 5  /  3
)  x.  E ) )
141118, 140eqtrd 2473 . . . 4  |-  ( ph  ->  ( ( ( j  +  ( 1  / 
3 ) )  x.  E )  +  -u ( ( j  -  ( 4  /  3
) )  x.  E
) )  =  ( ( 5  /  3
)  x.  E ) )
14299, 100, 1413brtr3d 4318 . . 3  |-  ( ph  ->  ( Y  -  X
)  <  ( (
5  /  3 )  x.  E ) )
143 5lt6 10494 . . . . . . 7  |-  5  <  6
144 3t2e6 10469 . . . . . . 7  |-  ( 3  x.  2 )  =  6
145143, 144breqtrri 4314 . . . . . 6  |-  5  <  ( 3  x.  2 )
146 3pos 10411 . . . . . . . 8  |-  0  <  3
14716, 146pm3.2i 452 . . . . . . 7  |-  ( 3  e.  RR  /\  0  <  3 )
148 ltdivmul 10200 . . . . . . 7  |-  ( ( 5  e.  RR  /\  2  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( 5  /  3 )  <  2  <->  5  <  (
3  x.  2 ) ) )
14985, 4, 147, 148mp3an 1309 . . . . . 6  |-  ( ( 5  /  3 )  <  2  <->  5  <  ( 3  x.  2 ) )
150145, 149mpbir 209 . . . . 5  |-  ( 5  /  3 )  <  2
151150a1i 11 . . . 4  |-  ( ph  ->  ( 5  /  3
)  <  2 )
15289, 79, 5, 151ltmul1dd 11074 . . 3  |-  ( ph  ->  ( ( 5  / 
3 )  x.  E
)  <  ( 2  x.  E ) )
1533, 90, 8, 142, 152lttrd 9528 . 2  |-  ( ph  ->  ( Y  -  X
)  <  ( 2  x.  E ) )
1543, 8absltd 12912 . 2  |-  ( ph  ->  ( ( abs `  ( Y  -  X )
)  <  ( 2  x.  E )  <->  ( -u (
2  x.  E )  <  ( Y  -  X )  /\  ( Y  -  X )  <  ( 2  x.  E
) ) ) )
15584, 153, 154mpbir2and 908 1  |-  ( ph  ->  ( abs `  ( Y  -  X )
)  <  ( 2  x.  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    e. wcel 1761    =/= wne 2604   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   3c3 10368   4c4 10369   5c5 10370   6c6 10371   RR+crp 10987   abscabs 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721
This theorem is referenced by:  stoweidlem61  29781
  Copyright terms: Public domain W3C validator