Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   Unicode version

Theorem stoweidlem10 37870
Description: Lemma for stoweid 37925. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
1  -  ( N  x.  A ) )  <_  ( ( 1  -  A ) ^ N ) )

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 9937 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
213ad2ant1 1029 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  -u A  e.  RR )
3 simp2 1009 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  N  e.  NN0 )
4 simpr 463 . . . . 5  |-  ( ( A  e.  RR  /\  A  <_  1 )  ->  A  <_  1 )
5 simpl 459 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <_  1 )  ->  A  e.  RR )
6 1red 9658 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <_  1 )  -> 
1  e.  RR )
75, 6lenegd 10192 . . . . 5  |-  ( ( A  e.  RR  /\  A  <_  1 )  -> 
( A  <_  1  <->  -u 1  <_  -u A ) )
84, 7mpbid 214 . . . 4  |-  ( ( A  e.  RR  /\  A  <_  1 )  ->  -u 1  <_  -u A )
983adant2 1027 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  -u 1  <_ 
-u A )
10 bernneq 12398 . . 3  |-  ( (
-u A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  -u A )  ->  ( 1  +  ( -u A  x.  N ) )  <_ 
( ( 1  + 
-u A ) ^ N ) )
112, 3, 9, 10syl3anc 1268 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
1  +  ( -u A  x.  N )
)  <_  ( (
1  +  -u A
) ^ N ) )
12 recn 9629 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
13123ad2ant1 1029 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  A  e.  CC )
14 nn0cn 10879 . . . 4  |-  ( N  e.  NN0  ->  N  e.  CC )
15143ad2ant2 1030 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  N  e.  CC )
16 1cnd 9659 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  1  e.  CC )
17 mulneg1 10055 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( -u A  x.  N )  =  -u ( A  x.  N
) )
1817oveq2d 6306 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( 1  +  (
-u A  x.  N
) )  =  ( 1  +  -u ( A  x.  N )
) )
19183adant3 1028 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
1  +  ( -u A  x.  N )
)  =  ( 1  +  -u ( A  x.  N ) ) )
20 simp3 1010 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  1  e.  CC )
21 mulcl 9623 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  e.  CC )
22213adant3 1028 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( A  x.  N )  e.  CC )
2320, 22negsubd 9992 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
1  +  -u ( A  x.  N )
)  =  ( 1  -  ( A  x.  N ) ) )
24 mulcom 9625 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
2524oveq2d 6306 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( 1  -  ( A  x.  N )
)  =  ( 1  -  ( N  x.  A ) ) )
26253adant3 1028 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
1  -  ( A  x.  N ) )  =  ( 1  -  ( N  x.  A
) ) )
2719, 23, 263eqtrd 2489 . . 3  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
1  +  ( -u A  x.  N )
)  =  ( 1  -  ( N  x.  A ) ) )
2813, 15, 16, 27syl3anc 1268 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
1  +  ( -u A  x.  N )
)  =  ( 1  -  ( N  x.  A ) ) )
29 1cnd 9659 . . . . 5  |-  ( A  e.  RR  ->  1  e.  CC )
3029, 12negsubd 9992 . . . 4  |-  ( A  e.  RR  ->  (
1  +  -u A
)  =  ( 1  -  A ) )
3130oveq1d 6305 . . 3  |-  ( A  e.  RR  ->  (
( 1  +  -u A ) ^ N
)  =  ( ( 1  -  A ) ^ N ) )
32313ad2ant1 1029 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
( 1  +  -u A ) ^ N
)  =  ( ( 1  -  A ) ^ N ) )
3311, 28, 323brtr3d 4432 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
1  -  ( N  x.  A ) )  <_  ( ( 1  -  A ) ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   class class class wbr 4402  (class class class)co 6290   CCcc 9537   RRcr 9538   1c1 9540    + caddc 9542    x. cmul 9544    <_ cle 9676    - cmin 9860   -ucneg 9861   NN0cn0 10869   ^cexp 12272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-seq 12214  df-exp 12273
This theorem is referenced by:  stoweidlem24  37884
  Copyright terms: Public domain W3C validator