Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Unicode version

Theorem stoweid 37194
Description: This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a, b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1  |-  F/_ t F
stoweid.2  |-  F/ t
ph
stoweid.3  |-  K  =  ( topGen `  ran  (,) )
stoweid.4  |-  ( ph  ->  J  e.  Comp )
stoweid.5  |-  T  = 
U. J
stoweid.6  |-  C  =  ( J  Cn  K
)
stoweid.7  |-  ( ph  ->  A  C_  C )
stoweid.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweid.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweid.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweid.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
stoweid.12  |-  ( ph  ->  F  e.  C )
stoweid.13  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweid  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, A    f, h, r, x, t, A    f, E, g, t    f, F, g    f, J, r, t    T, f, g, t    ph, f, g    h, E, r, x    h, F, r, x    T, h, r, x    ph, h, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, h, r)    F( t)    J( x, g, h)    K( x, f, g, h, r)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 459 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  T  =  (/) )
2 stoweid.10 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32ralrimiva 2817 . . . . . 6  |-  ( ph  ->  A. x  e.  RR  ( t  e.  T  |->  x )  e.  A
)
4 1re 9624 . . . . . 6  |-  1  e.  RR
5 id 22 . . . . . . . . 9  |-  ( x  =  1  ->  x  =  1 )
65mpteq2dv 4481 . . . . . . . 8  |-  ( x  =  1  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  1 ) )
76eleq1d 2471 . . . . . . 7  |-  ( x  =  1  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  1 )  e.  A ) )
87rspccv 3156 . . . . . 6  |-  ( A. x  e.  RR  (
t  e.  T  |->  x )  e.  A  -> 
( 1  e.  RR  ->  ( t  e.  T  |->  1 )  e.  A
) )
93, 4, 8mpisyl 19 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
109adantr 463 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  ( t  e.  T  |->  1 )  e.  A )
111, 10stoweidlem9 37140 . . 3  |-  ( (
ph  /\  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
12 stoweid.1 . . . 4  |-  F/_ t F
13 nfv 1728 . . . . 5  |-  F/ f
ph
14 nfv 1728 . . . . 5  |-  F/ f  -.  T  =  (/)
1513, 14nfan 1956 . . . 4  |-  F/ f ( ph  /\  -.  T  =  (/) )
16 stoweid.2 . . . . 5  |-  F/ t
ph
17 nfv 1728 . . . . 5  |-  F/ t  -.  T  =  (/)
1816, 17nfan 1956 . . . 4  |-  F/ t ( ph  /\  -.  T  =  (/) )
19 eqid 2402 . . . 4  |-  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )  =  ( t  e.  T  |->  ( ( F `
 t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
20 stoweid.3 . . . 4  |-  K  =  ( topGen `  ran  (,) )
21 stoweid.5 . . . 4  |-  T  = 
U. J
22 stoweid.4 . . . . 5  |-  ( ph  ->  J  e.  Comp )
2322adantr 463 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  J  e.  Comp )
24 stoweid.6 . . . 4  |-  C  =  ( J  Cn  K
)
25 stoweid.7 . . . . 5  |-  ( ph  ->  A  C_  C )
2625adantr 463 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  A  C_  C )
27 stoweid.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
28273adant1r 1223 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
29 stoweid.9 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
30293adant1r 1223 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
312adantlr 713 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)
32 stoweid.11 . . . . 5  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
3332adantlr 713 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t
) )  ->  E. h  e.  A  ( h `  r )  =/=  (
h `  t )
)
34 stoweid.12 . . . . 5  |-  ( ph  ->  F  e.  C )
3534adantr 463 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  F  e.  C )
36 stoweid.13 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
37 4re 10652 . . . . . . . . 9  |-  4  e.  RR
38 4pos 10671 . . . . . . . . 9  |-  0  <  4
3937, 38elrpii 11267 . . . . . . . 8  |-  4  e.  RR+
4039a1i 11 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
4140rpreccld 11313 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  e.  RR+ )
4236, 41ifcld 3927 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR+ )
4342adantr 463 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR+ )
44 neqne 36790 . . . . 5  |-  ( -.  T  =  (/)  ->  T  =/=  (/) )
4544adantl 464 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  T  =/=  (/) )
4636rpred 11303 . . . . . . 7  |-  ( ph  ->  E  e.  RR )
47 4ne0 10672 . . . . . . . . 9  |-  4  =/=  0
4837, 47rereccli 10349 . . . . . . . 8  |-  ( 1  /  4 )  e.  RR
4948a1i 11 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
5046, 49ifcld 3927 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
51 3re 10649 . . . . . . . 8  |-  3  e.  RR
52 3ne0 10670 . . . . . . . 8  |-  3  =/=  0
5351, 52rereccli 10349 . . . . . . 7  |-  ( 1  /  3 )  e.  RR
5453a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
5536rpxrd 11304 . . . . . . 7  |-  ( ph  ->  E  e.  RR* )
5641rpxrd 11304 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR* )
57 xrmin2 11431 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  ( 1  / 
4 ) )
5855, 56, 57syl2anc 659 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  (
1  /  4 ) )
59 3lt4 10745 . . . . . . . 8  |-  3  <  4
60 3pos 10669 . . . . . . . . 9  |-  0  <  3
6151, 37, 60, 38ltrecii 10501 . . . . . . . 8  |-  ( 3  <  4  <->  ( 1  /  4 )  < 
( 1  /  3
) )
6259, 61mpbi 208 . . . . . . 7  |-  ( 1  /  4 )  < 
( 1  /  3
)
6362a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  <  ( 1  /  3 ) )
6450, 49, 54, 58, 63lelttrd 9773 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <  (
1  /  3 ) )
6564adantr 463 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <  ( 1  / 
3 ) )
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 37193 . . 3  |-  ( (
ph  /\  -.  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
6711, 66pm2.61dan 792 . 2  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) ) )
68 nfv 1728 . . . . 5  |-  F/ t  f  e.  A
6916, 68nfan 1956 . . . 4  |-  F/ t ( ph  /\  f  e.  A )
70 xrmin1 11430 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7155, 56, 70syl2anc 659 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  E
)
7271ad2antrr 724 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7325ad2antrr 724 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  A  C_  C )
74 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  A )
7573, 74sseldd 3442 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  C )
7620, 21, 24, 75fcnre 36760 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f : T --> RR )
77 simpr 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  t  e.  T )
7876, 77jca 530 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f : T --> RR  /\  t  e.  T )
)
79 ffvelrn 6006 . . . . . . . . 9  |-  ( ( f : T --> RR  /\  t  e.  T )  ->  ( f `  t
)  e.  RR )
80 recn 9611 . . . . . . . . 9  |-  ( ( f `  t )  e.  RR  ->  (
f `  t )  e.  CC )
8178, 79, 803syl 20 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f `  t )  e.  CC )
8234ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F  e.  C )
8320, 21, 24, 82fcnre 36760 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F : T --> RR )
8483, 77jca 530 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F : T --> RR  /\  t  e.  T )
)
85 ffvelrn 6006 . . . . . . . . 9  |-  ( ( F : T --> RR  /\  t  e.  T )  ->  ( F `  t
)  e.  RR )
86 recn 9611 . . . . . . . . 9  |-  ( ( F `  t )  e.  RR  ->  ( F `  t )  e.  CC )
8784, 85, 863syl 20 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
8881, 87subcld 9966 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( f `  t
)  -  ( F `
 t ) )  e.  CC )
8988abscld 13414 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  e.  RR )
904, 37, 473pm3.2i 1175 . . . . . . . . 9  |-  ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )
91 redivcl 10303 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )  ->  (
1  /  4 )  e.  RR )
9290, 91mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
9346, 92ifcld 3927 . . . . . . 7  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
9493ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR )
9546ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  E  e.  RR )
96 ltletr 9706 . . . . . 6  |-  ( ( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  e.  RR  /\  if ( E  <_  (
1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR  /\  E  e.  RR )  ->  ( ( ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
9789, 94, 95, 96syl3anc 1230 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
9872, 97mpan2d 672 . . . 4  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  E ) )
9969, 98ralimdaa 2805 . . 3  |-  ( (
ph  /\  f  e.  A )  ->  ( A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  ->  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
10099reximdva 2878 . 2  |-  ( ph  ->  ( E. f  e.  A  A. t  e.  T  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
10167, 100mpd 15 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405   F/wnf 1637    e. wcel 1842   F/_wnfc 2550    =/= wne 2598   A.wral 2753   E.wrex 2754    C_ wss 3413   (/)c0 3737   ifcif 3884   U.cuni 4190   class class class wbr 4394    |-> cmpt 4452   `'ccnv 4821   ran crn 4823   -->wf 5564   ` cfv 5568  (class class class)co 6277   supcsup 7933   CCcc 9519   RRcr 9520   0cc0 9521   1c1 9522    + caddc 9524    x. cmul 9526   RR*cxr 9656    < clt 9657    <_ cle 9658    - cmin 9840    / cdiv 10246   3c3 10626   4c4 10627   RR+crp 11264   (,)cioo 11581   abscabs 13214   topGenctg 15050    Cn ccn 20016   Compccmp 20177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-rlim 13459  df-sum 13656  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-mulg 16382  df-cntz 16677  df-cmn 17122  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-cn 20019  df-cnp 20020  df-cmp 20178  df-tx 20353  df-hmeo 20546  df-xms 21113  df-ms 21114  df-tms 21115
This theorem is referenced by:  stowei  37195
  Copyright terms: Public domain W3C validator