Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Unicode version

Theorem stoweid 27679
Description: This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a,b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1  |-  F/_ t F
stoweid.2  |-  F/ t
ph
stoweid.3  |-  K  =  ( topGen `  ran  (,) )
stoweid.4  |-  ( ph  ->  J  e.  Comp )
stoweid.5  |-  T  = 
U. J
stoweid.6  |-  C  =  ( J  Cn  K
)
stoweid.7  |-  ( ph  ->  A  C_  C )
stoweid.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweid.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweid.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweid.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
stoweid.12  |-  ( ph  ->  F  e.  C )
stoweid.13  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweid  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, A    f, h, r, x, t, A    f, E, g, t    f, F, g    f, J, r, t    T, f, g, t    ph, f, g    h, E, r, x    h, F, r, x    T, h, r, x    ph, h, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, h, r)    F( t)    J( x, g, h)    K( x, f, g, h, r)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  T  =  (/) )
2 stoweid.10 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32ralrimiva 2749 . . . . . 6  |-  ( ph  ->  A. x  e.  RR  ( t  e.  T  |->  x )  e.  A
)
4 1re 9046 . . . . . 6  |-  1  e.  RR
5 id 20 . . . . . . . . 9  |-  ( x  =  1  ->  x  =  1 )
65mpteq2dv 4256 . . . . . . . 8  |-  ( x  =  1  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  1 ) )
76eleq1d 2470 . . . . . . 7  |-  ( x  =  1  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  1 )  e.  A ) )
87rspccv 3009 . . . . . 6  |-  ( A. x  e.  RR  (
t  e.  T  |->  x )  e.  A  -> 
( 1  e.  RR  ->  ( t  e.  T  |->  1 )  e.  A
) )
93, 4, 8ee10 1382 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
109adantr 452 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  ( t  e.  T  |->  1 )  e.  A )
111, 10stoweidlem9 27625 . . 3  |-  ( (
ph  /\  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
12 stoweid.1 . . . 4  |-  F/_ t F
13 nfv 1626 . . . . 5  |-  F/ f
ph
14 nfv 1626 . . . . 5  |-  F/ f  -.  T  =  (/)
1513, 14nfan 1842 . . . 4  |-  F/ f ( ph  /\  -.  T  =  (/) )
16 stoweid.2 . . . . 5  |-  F/ t
ph
17 nfv 1626 . . . . 5  |-  F/ t  -.  T  =  (/)
1816, 17nfan 1842 . . . 4  |-  F/ t ( ph  /\  -.  T  =  (/) )
19 eqid 2404 . . . 4  |-  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )  =  ( t  e.  T  |->  ( ( F `
 t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
20 stoweid.3 . . . 4  |-  K  =  ( topGen `  ran  (,) )
21 stoweid.5 . . . 4  |-  T  = 
U. J
22 stoweid.4 . . . . 5  |-  ( ph  ->  J  e.  Comp )
2322adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  J  e.  Comp )
24 stoweid.6 . . . 4  |-  C  =  ( J  Cn  K
)
25 stoweid.7 . . . . 5  |-  ( ph  ->  A  C_  C )
2625adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  A  C_  C )
27 stoweid.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
28273adant1r 1177 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
29 stoweid.9 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
30293adant1r 1177 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
312adantlr 696 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)
32 stoweid.11 . . . . 5  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
3332adantlr 696 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t
) )  ->  E. h  e.  A  ( h `  r )  =/=  (
h `  t )
)
34 stoweid.12 . . . . 5  |-  ( ph  ->  F  e.  C )
3534adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  F  e.  C )
36 stoweid.13 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
37 4re 10029 . . . . . . . . 9  |-  4  e.  RR
38 4pos 10042 . . . . . . . . 9  |-  0  <  4
3937, 38elrpii 10571 . . . . . . . 8  |-  4  e.  RR+
4039a1i 11 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
4140rpreccld 10614 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  e.  RR+ )
42 ifcl 3735 . . . . . 6  |-  ( ( E  e.  RR+  /\  (
1  /  4 )  e.  RR+ )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR+ )
4336, 41, 42syl2anc 643 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR+ )
4443adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR+ )
45 df-ne 2569 . . . . . 6  |-  ( T  =/=  (/)  <->  -.  T  =  (/) )
4645biimpri 198 . . . . 5  |-  ( -.  T  =  (/)  ->  T  =/=  (/) )
4746adantl 453 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  T  =/=  (/) )
4836rpred 10604 . . . . . . 7  |-  ( ph  ->  E  e.  RR )
49 0re 9047 . . . . . . . . . 10  |-  0  e.  RR
5049, 38gtneii 9141 . . . . . . . . 9  |-  4  =/=  0
5137, 50rereccli 9735 . . . . . . . 8  |-  ( 1  /  4 )  e.  RR
5251a1i 11 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
53 ifcl 3735 . . . . . . 7  |-  ( ( E  e.  RR  /\  ( 1  /  4
)  e.  RR )  ->  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  e.  RR )
5448, 52, 53syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
55 3re 10027 . . . . . . . 8  |-  3  e.  RR
56 3ne0 10041 . . . . . . . 8  |-  3  =/=  0
5755, 56rereccli 9735 . . . . . . 7  |-  ( 1  /  3 )  e.  RR
5857a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
5936rpxrd 10605 . . . . . . 7  |-  ( ph  ->  E  e.  RR* )
6041rpxrd 10605 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR* )
61 xrmin2 10722 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  ( 1  / 
4 ) )
6259, 60, 61syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  (
1  /  4 ) )
63 3lt4 10101 . . . . . . . 8  |-  3  <  4
64 3pos 10040 . . . . . . . . 9  |-  0  <  3
6555, 37, 64, 38ltrecii 9883 . . . . . . . 8  |-  ( 3  <  4  <->  ( 1  /  4 )  < 
( 1  /  3
) )
6663, 65mpbi 200 . . . . . . 7  |-  ( 1  /  4 )  < 
( 1  /  3
)
6766a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  <  ( 1  /  3 ) )
6854, 52, 58, 62, 67lelttrd 9184 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <  (
1  /  3 ) )
6968adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <  ( 1  / 
3 ) )
7012, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 44, 47, 69stoweidlem62 27678 . . 3  |-  ( (
ph  /\  -.  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
7111, 70pm2.61dan 767 . 2  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) ) )
72 nfv 1626 . . . . 5  |-  F/ t  f  e.  A
7316, 72nfan 1842 . . . 4  |-  F/ t ( ph  /\  f  e.  A )
74 xrmin1 10721 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7559, 60, 74syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  E
)
7675ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7725ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  A  C_  C )
78 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  A )
7977, 78sseldd 3309 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  C )
8020, 21, 24, 79fcnre 27563 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f : T --> RR )
81 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  t  e.  T )
8280, 81jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f : T --> RR  /\  t  e.  T )
)
83 ffvelrn 5827 . . . . . . . . 9  |-  ( ( f : T --> RR  /\  t  e.  T )  ->  ( f `  t
)  e.  RR )
84 recn 9036 . . . . . . . . 9  |-  ( ( f `  t )  e.  RR  ->  (
f `  t )  e.  CC )
8582, 83, 843syl 19 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f `  t )  e.  CC )
8634ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F  e.  C )
8720, 21, 24, 86fcnre 27563 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F : T --> RR )
8887, 81jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F : T --> RR  /\  t  e.  T )
)
89 ffvelrn 5827 . . . . . . . . 9  |-  ( ( F : T --> RR  /\  t  e.  T )  ->  ( F `  t
)  e.  RR )
90 recn 9036 . . . . . . . . 9  |-  ( ( F `  t )  e.  RR  ->  ( F `  t )  e.  CC )
9188, 89, 903syl 19 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
9285, 91subcld 9367 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( f `  t
)  -  ( F `
 t ) )  e.  CC )
9392abscld 12193 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  e.  RR )
9437, 38gt0ne0ii 9519 . . . . . . . . . 10  |-  4  =/=  0
954, 37, 943pm3.2i 1132 . . . . . . . . 9  |-  ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )
96 redivcl 9689 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )  ->  (
1  /  4 )  e.  RR )
9795, 96mp1i 12 . . . . . . . 8  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
9848, 97, 53syl2anc 643 . . . . . . 7  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
9998ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR )
10048ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  E  e.  RR )
101 ltletr 9122 . . . . . 6  |-  ( ( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  e.  RR  /\  if ( E  <_  (
1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR  /\  E  e.  RR )  ->  ( ( ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
10293, 99, 100, 101syl3anc 1184 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
10376, 102mpan2d 656 . . . 4  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  E ) )
10473, 103ralimdaa 2743 . . 3  |-  ( (
ph  /\  f  e.  A )  ->  ( A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  ->  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
105104reximdva 2778 . 2  |-  ( ph  ->  ( E. f  e.  A  A. t  e.  T  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
10671, 105mpd 15 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1721   F/_wnfc 2527    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   (/)c0 3588   ifcif 3699   U.cuni 3975   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836   ran crn 4838   -->wf 5409   ` cfv 5413  (class class class)co 6040   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   3c3 10006   4c4 10007   RR+crp 10568   (,)cioo 10872   abscabs 11994   topGenctg 13620    Cn ccn 17242   Compccmp 17403
This theorem is referenced by:  stowei  27680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305
  Copyright terms: Public domain W3C validator