Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stowei Structured version   Visualization version   Unicode version

Theorem stowei 37926
Description: This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a, b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 37925: often times it will be better to use stoweid 37925 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stowei.1  |-  K  =  ( topGen `  ran  (,) )
stowei.2  |-  J  e. 
Comp
stowei.3  |-  T  = 
U. J
stowei.4  |-  C  =  ( J  Cn  K
)
stowei.5  |-  A  C_  C
stowei.6  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
stowei.7  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
stowei.8  |-  ( x  e.  RR  ->  (
t  e.  T  |->  x )  e.  A )
stowei.9  |-  ( ( r  e.  T  /\  t  e.  T  /\  r  =/=  t )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
stowei.10  |-  F  e.  C
stowei.11  |-  E  e.  RR+
Assertion
Ref Expression
stowei  |-  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
Distinct variable groups:    f, g,
t, A    f, h, r, x, t, A    f, E, g, t    f, F, g, t    f, J, r, t    T, f, g, t    h, E, r, x    h, F, r, x    T, h, r, x    t, K
Allowed substitution hints:    C( x, t, f, g, h, r)    J( x, g, h)    K( x, f, g, h, r)

Proof of Theorem stowei
StepHypRef Expression
1 nfcv 2592 . . 3  |-  F/_ t F
2 nftru 1677 . . 3  |-  F/ t T.
3 stowei.1 . . 3  |-  K  =  ( topGen `  ran  (,) )
4 stowei.2 . . . 4  |-  J  e. 
Comp
54a1i 11 . . 3  |-  ( T. 
->  J  e.  Comp )
6 stowei.3 . . 3  |-  T  = 
U. J
7 stowei.4 . . 3  |-  C  =  ( J  Cn  K
)
8 stowei.5 . . . 4  |-  A  C_  C
98a1i 11 . . 3  |-  ( T. 
->  A  C_  C )
10 stowei.6 . . . 4  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
11103adant1 1026 . . 3  |-  ( ( T.  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
12 stowei.7 . . . 4  |-  ( ( f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
13123adant1 1026 . . 3  |-  ( ( T.  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
14 stowei.8 . . . 4  |-  ( x  e.  RR  ->  (
t  e.  T  |->  x )  e.  A )
1514adantl 468 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
16 stowei.9 . . . 4  |-  ( ( r  e.  T  /\  t  e.  T  /\  r  =/=  t )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
1716adantl 468 . . 3  |-  ( ( T.  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
18 stowei.10 . . . 4  |-  F  e.  C
1918a1i 11 . . 3  |-  ( T. 
->  F  e.  C
)
20 stowei.11 . . . 4  |-  E  e.  RR+
2120a1i 11 . . 3  |-  ( T. 
->  E  e.  RR+ )
221, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21stoweid 37925 . 2  |-  ( T. 
->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
2322trud 1453 1  |-  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444   T. wtru 1445    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    C_ wss 3404   U.cuni 4198   class class class wbr 4402    |-> cmpt 4461   ran crn 4835   ` cfv 5582  (class class class)co 6290   RRcr 9538    + caddc 9542    x. cmul 9544    < clt 9675    - cmin 9860   RR+crp 11302   (,)cioo 11635   abscabs 13297   topGenctg 15336    Cn ccn 20240   Compccmp 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-cn 20243  df-cnp 20244  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-xms 21335  df-ms 21336  df-tms 21337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator